Author: K. L. Mittal
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Ice Adhesion
Author: K. L. Mittal
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Ice Adhesion
Author: K. L. Mittal
Publisher: John Wiley & Sons
ISBN: 1119640539
Category : Technology & Engineering
Languages : en
Pages : 701
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Publisher: John Wiley & Sons
ISBN: 1119640539
Category : Technology & Engineering
Languages : en
Pages : 701
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Icephobic Materials for Anti/De-icing Technologies
Author: Yizhou Shen
Publisher: Springer Nature
ISBN: 9819762936
Category :
Languages : en
Pages : 524
Book Description
Publisher: Springer Nature
ISBN: 9819762936
Category :
Languages : en
Pages : 524
Book Description
Bureau of Ships Journal
Author: United States. Navy Department. Bureau of Ships
Publisher:
ISBN:
Category :
Languages : en
Pages : 1028
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 1028
Book Description
Adhesive Properties of Ice
Author: Hans Helmut Gunter Jellinek
Publisher:
ISBN:
Category : Adhesion
Languages : en
Pages : 28
Book Description
Publisher:
ISBN:
Category : Adhesion
Languages : en
Pages : 28
Book Description
Physics and Chemistry of Ice
Author: Werner Kuhs
Publisher: Royal Society of Chemistry
ISBN: 1847557775
Category : Science
Languages : en
Pages : 721
Book Description
Physics and Chemistry of Ice is an authoritative summary of state-of the-art research contributions from the world's leading scientists. A key selection of submissions from the 11th International Conference on the Physics and Chemistry of Ice, 2006 are presented here with a foreword by Werner F. Kuhs. An invaluable resource, this book provides researchers and professionals with up-to-date coverage on a wide range of areas in ice science including: * Spectroscopic and diffraction studies * Molecular dynamics simulations * Studies of Ice Mechanics * Quantum mechanical ab initio calculations * Ice and hydrate crystal growth and inhibition studies * Bulk and surface properties of ice and gas hydrates * Snow physics and chemistry This insight into topical aspects of ice research is a key point of reference for physicists, chemists, glaciologists, cryo-biologists and professionals working in the fields of ice and hydrogen bonding.
Publisher: Royal Society of Chemistry
ISBN: 1847557775
Category : Science
Languages : en
Pages : 721
Book Description
Physics and Chemistry of Ice is an authoritative summary of state-of the-art research contributions from the world's leading scientists. A key selection of submissions from the 11th International Conference on the Physics and Chemistry of Ice, 2006 are presented here with a foreword by Werner F. Kuhs. An invaluable resource, this book provides researchers and professionals with up-to-date coverage on a wide range of areas in ice science including: * Spectroscopic and diffraction studies * Molecular dynamics simulations * Studies of Ice Mechanics * Quantum mechanical ab initio calculations * Ice and hydrate crystal growth and inhibition studies * Bulk and surface properties of ice and gas hydrates * Snow physics and chemistry This insight into topical aspects of ice research is a key point of reference for physicists, chemists, glaciologists, cryo-biologists and professionals working in the fields of ice and hydrogen bonding.
Techniques for Protecting Overhead Lines in Winter Conditions
Author: Masoud Farzaneh
Publisher: Springer Nature
ISBN: 3030874559
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book offers a comprehensive review of the various options for improving the performance of overhead power lines in winter conditions, taking into account both mechanical and electrical aspects. Experience within the CIGRE community reveals many strategies to protect overhead power lines from damage caused by heavy build-up of ice and snow or electrical issues such as insulator icing flashovers. The initial approach is to consider the predicted ice loads from the available databases. This is supplemented with some fundamental aspects of icing physics that affect accretion rate as well as factors in ice shedding on traditional (metal, ceramic) and novel treated surfaces. These ice physics concepts structure the ways to categorize and evaluate methods to reduce or prevent icing on conductors and ground wires or to prevent flashover of insulators. Many utilities in cold climate regions have developed and used methods and strategies to reduce ice loads using anti-icing (AI) and / or de-icing (DI) methods. In general, AI methods are used before or early during ice build-up, while DI methods are activated during and sometimes after ice build-up. The book describes and discusses some historical, operational, or potential AI / DI systems in the ice physics context. This supports a comprehensive review of AI coatings including concepts, relevant material properties, application methods, and finally test methods for characterizing the long-term performance.
Publisher: Springer Nature
ISBN: 3030874559
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book offers a comprehensive review of the various options for improving the performance of overhead power lines in winter conditions, taking into account both mechanical and electrical aspects. Experience within the CIGRE community reveals many strategies to protect overhead power lines from damage caused by heavy build-up of ice and snow or electrical issues such as insulator icing flashovers. The initial approach is to consider the predicted ice loads from the available databases. This is supplemented with some fundamental aspects of icing physics that affect accretion rate as well as factors in ice shedding on traditional (metal, ceramic) and novel treated surfaces. These ice physics concepts structure the ways to categorize and evaluate methods to reduce or prevent icing on conductors and ground wires or to prevent flashover of insulators. Many utilities in cold climate regions have developed and used methods and strategies to reduce ice loads using anti-icing (AI) and / or de-icing (DI) methods. In general, AI methods are used before or early during ice build-up, while DI methods are activated during and sometimes after ice build-up. The book describes and discusses some historical, operational, or potential AI / DI systems in the ice physics context. This supports a comprehensive review of AI coatings including concepts, relevant material properties, application methods, and finally test methods for characterizing the long-term performance.
Corrosion and Corrosion Protection of Wind Power Structures in Marine Environments
Author: Andreas Momber
Publisher: Academic Press
ISBN: 0323857450
Category : Technology & Engineering
Languages : en
Pages : 756
Book Description
Corrosion and Corrosion Protection of Wind Power Structures in Marine Environments: Volume 2: Corrosion Protection Measures offers the first comprehensive review on corrosion and corrosion protection of offshore wind power structures. The book extensively discusses corrosion phenomena and corrosion types in different marine corrosion zones, including the modeling of corrosion processes and interactions between corrosion and structural stability. The book addresses important design issues, namely materials selection relevant to their performance in marine environments, corrosion allowance, and constructive design. Active and passive corrosion protection measures are emphasized, with special sections on cathodic corrosion protection and the use of protective coatings. Seawater related issues associated with cathodic protection, such as calcareous deposit formation, hydrogen formation, and fouling, are discussed. With respect to protective coatings, the book considers, for the first time, complete loading scenarios, including corrosive loads, mechanical loads, and special loads, and covers a wide range of coating materials. Problems associated with fouling and bacterial-induced corrosion are extensively reviewed. The book closes with a chapter on recent developments in maintenance strategies, inspection techniques, and repair technologies. The book will be of special interest to materials scientists, materials developers, corrosion engineers, maintenance engineers, civil engineers, steel work designers, mechanical engineers, marine engineers, chemists, and coating specialists. Offshore wind power is an emerging renewable technology and a key factor for a cleaner environment. Offshore wind power structures are situated in a demanding and challenging marine environment. The structures are loaded in a complex way, including mechanical loads and corrosive loads. Corrosion is one of the major limiting factors to the reliability and performance of the technology. Maintenance and repair of corrosion protection systems are particularly laborious and costly. - Explores the literature between 1950 and 2020 and contains over 2000 references - Offers the most complete monograph on the issue - Covers all aspects of corrosion protection in detail, including coatings, cathodic protection, corrosion allowance, constructive design, as well as maintenance and repair - Delivers the most complete review on corrosion of metals in marine/offshore environments - Focuses on all aspects of offshore wind power structures, namely foundations, towers, internal sections, connection flanges, and transformation platforms
Publisher: Academic Press
ISBN: 0323857450
Category : Technology & Engineering
Languages : en
Pages : 756
Book Description
Corrosion and Corrosion Protection of Wind Power Structures in Marine Environments: Volume 2: Corrosion Protection Measures offers the first comprehensive review on corrosion and corrosion protection of offshore wind power structures. The book extensively discusses corrosion phenomena and corrosion types in different marine corrosion zones, including the modeling of corrosion processes and interactions between corrosion and structural stability. The book addresses important design issues, namely materials selection relevant to their performance in marine environments, corrosion allowance, and constructive design. Active and passive corrosion protection measures are emphasized, with special sections on cathodic corrosion protection and the use of protective coatings. Seawater related issues associated with cathodic protection, such as calcareous deposit formation, hydrogen formation, and fouling, are discussed. With respect to protective coatings, the book considers, for the first time, complete loading scenarios, including corrosive loads, mechanical loads, and special loads, and covers a wide range of coating materials. Problems associated with fouling and bacterial-induced corrosion are extensively reviewed. The book closes with a chapter on recent developments in maintenance strategies, inspection techniques, and repair technologies. The book will be of special interest to materials scientists, materials developers, corrosion engineers, maintenance engineers, civil engineers, steel work designers, mechanical engineers, marine engineers, chemists, and coating specialists. Offshore wind power is an emerging renewable technology and a key factor for a cleaner environment. Offshore wind power structures are situated in a demanding and challenging marine environment. The structures are loaded in a complex way, including mechanical loads and corrosive loads. Corrosion is one of the major limiting factors to the reliability and performance of the technology. Maintenance and repair of corrosion protection systems are particularly laborious and costly. - Explores the literature between 1950 and 2020 and contains over 2000 references - Offers the most complete monograph on the issue - Covers all aspects of corrosion protection in detail, including coatings, cathodic protection, corrosion allowance, constructive design, as well as maintenance and repair - Delivers the most complete review on corrosion of metals in marine/offshore environments - Focuses on all aspects of offshore wind power structures, namely foundations, towers, internal sections, connection flanges, and transformation platforms
Stimuli-Responsive Dewetting/Wetting Smart Surfaces and Interfaces
Author: Atsushi Hozumi
Publisher: Springer
ISBN: 3319926543
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
Superhydrophobic surfaces, artificially mimicking lotus leaves, have captured the attention of scientists and engineers over the past few decades. Recent trends have shifted from superhydrophobicity to superominipohobicity, or superamphiphobicity. In addition, dynamic rather than static surface wetting/dewetting properties, which can be triggered by various stimuli, including temperature, pH, magnetic/electric fields, solvents, light exposure etc, have been highly sought after for commercial applications. This book will focus on recent topics related to various stimuli-responsive wetting/dewetting surfaces, and give an overview of the knowledge and concepts of how to design and establish these smart artificial surfaces, which can be used for technical developments in a wide variety research fields.
Publisher: Springer
ISBN: 3319926543
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
Superhydrophobic surfaces, artificially mimicking lotus leaves, have captured the attention of scientists and engineers over the past few decades. Recent trends have shifted from superhydrophobicity to superominipohobicity, or superamphiphobicity. In addition, dynamic rather than static surface wetting/dewetting properties, which can be triggered by various stimuli, including temperature, pH, magnetic/electric fields, solvents, light exposure etc, have been highly sought after for commercial applications. This book will focus on recent topics related to various stimuli-responsive wetting/dewetting surfaces, and give an overview of the knowledge and concepts of how to design and establish these smart artificial surfaces, which can be used for technical developments in a wide variety research fields.
Ice Destruction
Author: V.V. Bogorodsky
Publisher: Springer Science & Business Media
ISBN: 9400937210
Category : Science
Languages : en
Pages : 305
Book Description
The problem of ice destruction comes most frequently to our attention in engineering glaciology and ice engineering because it is essential in the solution of many problems in the polar regions of the Earth. Ice destruction (like the destruction of any other material, in principle) is a complex problem at the junction of solid-state physics, continuum mechanics, and materials science. Ice, particularly sea ice, is characterized by known anomalies that can be explained by the simultaneous occurrence of solid, liquid and gaseous phases. Even minor temperature fluctuations cause changes in the relationship of these phases and, as a consequence, change the physico-mechanical properties of ice. New hydraulic engineering tasks, associated with the destruction of such a complex material, demand continuous improvement of methods and techniques. The present authors have brought these together in a form which is convenient for a wide range of users. This book covers only local ice destruction, by means other than icebreakers, requiring comparatively low consumption of power in proportion to the volume and mass of destroyed ice. Problems of natural ice destruction under the influence of solar radiation, tidal, wind and wave factors are not dis cussed. Mechanical and thermal methods were the first of many to be used for ice destruction. Their application has involved a greater num ber of techniques, so the first two chapters are the longest.
Publisher: Springer Science & Business Media
ISBN: 9400937210
Category : Science
Languages : en
Pages : 305
Book Description
The problem of ice destruction comes most frequently to our attention in engineering glaciology and ice engineering because it is essential in the solution of many problems in the polar regions of the Earth. Ice destruction (like the destruction of any other material, in principle) is a complex problem at the junction of solid-state physics, continuum mechanics, and materials science. Ice, particularly sea ice, is characterized by known anomalies that can be explained by the simultaneous occurrence of solid, liquid and gaseous phases. Even minor temperature fluctuations cause changes in the relationship of these phases and, as a consequence, change the physico-mechanical properties of ice. New hydraulic engineering tasks, associated with the destruction of such a complex material, demand continuous improvement of methods and techniques. The present authors have brought these together in a form which is convenient for a wide range of users. This book covers only local ice destruction, by means other than icebreakers, requiring comparatively low consumption of power in proportion to the volume and mass of destroyed ice. Problems of natural ice destruction under the influence of solar radiation, tidal, wind and wave factors are not dis cussed. Mechanical and thermal methods were the first of many to be used for ice destruction. Their application has involved a greater num ber of techniques, so the first two chapters are the longest.