High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites PDF full book. Access full book title High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites by Longbiao Li. Download full books in PDF and EPUB format.

High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites

High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: CRC Press
ISBN: 1000629694
Category : Technology & Engineering
Languages : en
Pages : 200

Book Description
This book focuses on mechanical hysteresis behavior in different fiber-reinforced ceramic-matrix composites (CMCs), including 1D minicomposites, 1D unidirectional, 2D cross-ply, 2D plain-woven, 2.5D woven, and 3D needle-punched composites. Ceramic-matrix composites (CMCs) are considered to be the lightweight high-temperature materials for hot-section components in aeroengines with the most potential. To improve the reliability and safety of CMC components during operation, it is necessary to conduct damage and failure mechanism analysis, and to develop models to predict this damage as well as fracture over lifetime - mechanical hysteresis is a key damage behavior in fiber-reinforced CMCs. The appearance of hysteresis is due to a composite’s internal damage mechanisms and modes, such as, matrix cracking, interface debonding, and fiber failure. Micromechanical damage models and constitutive models are developed to predict mechanical hysteresis in different CMCs. Effects of a composite’s constituent properties, stress level, and the damage states of the mechanical hysteresis behavior of CMCs are also discussed. This book also covers damage mechanisms, damage models and micromechanical constitutive models for the mechanical hysteresis of CMCs. This book will be a great resource for students, scholars, material scientists and engineering designers who would like to understand and master the mechanical hysteresis behavior of fiber-reinforced CMCs.

High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites

High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: CRC Press
ISBN: 1000629694
Category : Technology & Engineering
Languages : en
Pages : 200

Book Description
This book focuses on mechanical hysteresis behavior in different fiber-reinforced ceramic-matrix composites (CMCs), including 1D minicomposites, 1D unidirectional, 2D cross-ply, 2D plain-woven, 2.5D woven, and 3D needle-punched composites. Ceramic-matrix composites (CMCs) are considered to be the lightweight high-temperature materials for hot-section components in aeroengines with the most potential. To improve the reliability and safety of CMC components during operation, it is necessary to conduct damage and failure mechanism analysis, and to develop models to predict this damage as well as fracture over lifetime - mechanical hysteresis is a key damage behavior in fiber-reinforced CMCs. The appearance of hysteresis is due to a composite’s internal damage mechanisms and modes, such as, matrix cracking, interface debonding, and fiber failure. Micromechanical damage models and constitutive models are developed to predict mechanical hysteresis in different CMCs. Effects of a composite’s constituent properties, stress level, and the damage states of the mechanical hysteresis behavior of CMCs are also discussed. This book also covers damage mechanisms, damage models and micromechanical constitutive models for the mechanical hysteresis of CMCs. This book will be a great resource for students, scholars, material scientists and engineering designers who would like to understand and master the mechanical hysteresis behavior of fiber-reinforced CMCs.

Hysteresis of Composites

Hysteresis of Composites PDF Author: Li Longbiao
Publisher: BoD – Books on Demand
ISBN: 1789846196
Category : Technology & Engineering
Languages : en
Pages : 178

Book Description
This book introduces the hysteresis and damping of, and damage to, composites. It analyzes the following areas: damage mechanisms affecting the hysteresis of composites, mechanical hysteresis of ceramic-matrix composites, hysteresis behavior of fiber-reinforced ceramic-matrix composites (CMCs), relationship between the internal damage and hysteresis loops of CMCs, and mechanical hysteresis loops and the fiber/matrix interface frictional coefficient of SiC/CAS and C/SiC composites. A damping study on aluminum-multiwalled carbon nanotube-based nanocomposite materials is discussed to increase the damping property for applications like engine heads, pistons, cylinder blocks, and other aerospace components. The effect of ceramic/graphite addition to the dry sliding wear behavior of copper-based hybrid composites has been assessed at three different normal loads of 9.81, 19.62, and 29.34 N. The authors hope this book will help material scientists and engineering designers to understand and master the hysteresis of composites.

Hysteresis of Ceramic-Matrix Composites

Hysteresis of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Book Description
In this chapter, the hysteresis behavior of fiber-reinforced ceramic-matrix composites (CMCs) is investigated. Based on the interface slip state inside of CMCs, the hysteresis loops can be divided into four different cases. The relationship between the internal damage and the hysteresis loops of CMCs is established. Using the experimental hysteresis loops, the fiber/matrix interface frictional coefficient can be obtained. The mechanical hysteresis loops and the fiber/matrix interface frictional coefficient of SiC/CAS and C/SiC composites are predicted using the present models. When the fiber/matrix interface frictional coefficient decreases under cyclic fatigue loading, the fatigue hysteresis loops, fatigue hysteresis dissipated energy, fiber/matrix interface debonding, and slip all change. The fatigue hysteresis dissipated energy first increases and then decreases with decreasing interface frictional coefficient.

Micromechanics of Ceramic-Matrix Composites at Elevated Temperatures

Micromechanics of Ceramic-Matrix Composites at Elevated Temperatures PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9819712947
Category :
Languages : en
Pages : 139

Book Description


Durability of Ceramic-Matrix Composites

Durability of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Woodhead Publishing
ISBN: 0081030223
Category : Technology & Engineering
Languages : en
Pages : 480

Book Description
Durability of Ceramic-Matrix Composites presents the latest information on these high-temperature structural materials and their outstanding advantages over more conventional materials, including their high specific strength, high specific modulus, high temperature resistance and good thermal stability. The critical nature of the application of these advanced materials makes it necessary to have a complete understanding of their characterization. This book focuses explicitly on the durability of CMCs and will be extremely valuable for materials scientists and engineers who are dealing with the simulation of durability response and fatigue of ceramic matrix composites. - Provides the latest theoretical and applied research in the field of ceramic matrix composites, particularly as it relates to usage in aerospace propulsion systems - Presents extensive information on the micromechanics of damage evolution, lifetime prediction and durability in ceramic matrix composites - Details parameter studies that are valuable for materials development and lifetime durability studies

High Temperature Ceramic Matrix Composites

High Temperature Ceramic Matrix Composites PDF Author: Walter Krenkel
Publisher: Wiley-VCH
ISBN:
Category : Science
Languages : en
Pages : 1044

Book Description
The extreme high temperature stability and damage tolerance of materials and components required for space, terrestrial, energetic and many other applications can only be achieved by ceramic materials. All over the world research is going on to develop ceramics with quasiductile behaviour. The materials with the highest potential for high temperature applications are fibre reinforced ceramic matrix composites (CMC). The international conference HT-CMC 4 in Munich will continue the tradition of its successful predecessor meetings held in Bordeaux (France, 1993), Santa Barbara (USA, 1995) and Osaka (Japan, 1998). This conference series has been recognized as the central meeting event in high temperature CMC science and technology and demonstrates the great interest in research and development on reinforced ceramics. The Proceedings of this conference will therefore be a valuable reference for every materials scientist or engineer involved in this field of high-tech materials development.

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures PDF Author: Longbiao Li
Publisher:
ISBN: 9789811532757
Category : Aerospace engineering
Languages : en
Pages : 0

Book Description
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines. .

Nonlinear Behavior of Ceramic-Matrix Composites

Nonlinear Behavior of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Woodhead Publishing
ISBN: 0323858171
Category : Technology & Engineering
Languages : en
Pages : 252

Book Description
Nonlinear Damage Behavior of Ceramic Matrix Composites help readers [researchers, material scientists and design engineers] gain greater understanding on the damage mechanisms inside CMCs so they can better design components used in aeronautics and astronautics. Key areas addressed in the book include: the nonlinear damage behavior of ceramic-matrix composites, including damage mechanisms and models, nonlinear damage behavior of ceramic-matrix composites under tensile and fatigue loading, strain-rate dependent, stochastic loading dependent, and time dependent nonlinear damage behavior, and the effect of pre-exposure and thermal fatigue on non-linear damage behavior of ceramic-matrix composites. - Provides comprehensive coverage on damage mechanisms and models under tensile and cyclic fatigue loading which ultimately control nonlinear behavior - Covers nonlinear damage analyses of CMC components and experimental observations of damage evolution - Presents extensive knowledge on fracture mechanic principles used in the design of aerospace propulsion systems

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811621411
Category : Technology & Engineering
Languages : en
Pages : 205

Book Description
This book presents the relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 - 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. This book investigates damage and fracture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading, including: (1) tensile damage and fracture of fiber-reinforced CMCs subjected to stochastic loading; (2) fatigue hysteresis loops of fiber-reinforced CMCs subjected to stochastic loading; (3) stress rupture of fiber-reinforced CMCs with stochastic loading at intermediate temperature; (4) fatigue life prediction of fiber-reinforced CMCs subjected to stochastic overloading stress at elevated temperature; and (5) fatigue limit stress prediction of fiber-reinforced CMCs with stochastic loading. This book helps the material scientists and engineering designers to understand and master the damage and fracture of ceramic-matrix composites under stochastic loading.

Damage, Fracture, and Fatigue of Ceramic-Matrix Composites

Damage, Fracture, and Fatigue of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Springer
ISBN: 9811317836
Category : Technology & Engineering
Languages : en
Pages : 249

Book Description
This book focuses on the damage, fracture and fatigue of ceramic-matrix composites. It investigates tensile damage and fracture, fatigue hysteresis, and the properties of interfaces subjected to cyclic fatigue loading. Further, it predicts fatigue life at room and elevated temperatures using newly developed damage models and methods, and it analyzes and compares damage, fracture and fatigue behavior of different fiber performs: unidirectional, cross-ply, 2D and 2.5D woven. The developed models and methods can be used to predict the damage and lifetime of ceramic-matrix composites during applications on hot section components.Ceramic-matrix composites (CMCs) are high-temperature structural materials with the significant advantages of high specific strength, high specific modulus, high temperature resistance and good thermal stability, which play a crucial role in the development of high thrust weight ratio aero engines. The critical nature of the application of these advanced materials makes comprehensive characterization a necessity, and as such this book provides designers with essential information pertaining not only to the strength of the materials, but also to their fatigue and damage characteristics.