Hyperbolic Manifolds and Holomorphic Mappings PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hyperbolic Manifolds and Holomorphic Mappings PDF full book. Access full book title Hyperbolic Manifolds and Holomorphic Mappings by Shoshichi Kobayashi. Download full books in PDF and EPUB format.

Hyperbolic Manifolds and Holomorphic Mappings

Hyperbolic Manifolds and Holomorphic Mappings PDF Author: Shoshichi Kobayashi
Publisher: World Scientific
ISBN: 9812564969
Category : Mathematics
Languages : en
Pages : 161

Book Description
The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections ?invariant metrics and pseudo-distances? and ?hyperbolic complex manifolds? within the section ?holomorphic mappings?. The invariant distance introduced in the first edition is now called the ?Kobayashi distance?, and the hyperbolicity in the sense of this book is called the ?Kobayashi hyperbolicity? to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.

Hyperbolic Manifolds and Holomorphic Mappings

Hyperbolic Manifolds and Holomorphic Mappings PDF Author: Shoshichi Kobayashi
Publisher: World Scientific
ISBN: 9812564969
Category : Mathematics
Languages : en
Pages : 161

Book Description
The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections ?invariant metrics and pseudo-distances? and ?hyperbolic complex manifolds? within the section ?holomorphic mappings?. The invariant distance introduced in the first edition is now called the ?Kobayashi distance?, and the hyperbolicity in the sense of this book is called the ?Kobayashi hyperbolicity? to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.

Hyperbolic Manifolds And Holomorphic Mappings: An Introduction (Second Edition)

Hyperbolic Manifolds And Holomorphic Mappings: An Introduction (Second Edition) PDF Author: Shoshichi Kobayashi
Publisher: World Scientific Publishing Company
ISBN: 9813101938
Category : Mathematics
Languages : en
Pages : 161

Book Description
The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections “invariant metrics and pseudo-distances” and “hyperbolic complex manifolds” within the section “holomorphic mappings”. The invariant distance introduced in the first edition is now called the “Kobayashi distance”, and the hyperbolicity in the sense of this book is called the “Kobayashi hyperbolicity” to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.

Stein Manifolds and Holomorphic Mappings

Stein Manifolds and Holomorphic Mappings PDF Author: Franc Forstnerič
Publisher: Springer
ISBN: 3319610589
Category : Mathematics
Languages : en
Pages : 569

Book Description
This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups.

Intrinsic Measures on Complex Manifolds and Holomorphic Mappings

Intrinsic Measures on Complex Manifolds and Holomorphic Mappings PDF Author: Donald A. Eisenman
Publisher: American Mathematical Soc.
ISBN: 0821812963
Category : Analytic functions
Languages : en
Pages : 84

Book Description


Hyperbolic Complex Spaces

Hyperbolic Complex Spaces PDF Author: Shoshichi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 3662035820
Category : Mathematics
Languages : en
Pages : 480

Book Description
In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.

Geometry and Analysis on Complex Manifolds

Geometry and Analysis on Complex Manifolds PDF Author: Toshiki Mabuchi
Publisher: World Scientific
ISBN: 9789810220679
Category : Mathematics
Languages : en
Pages : 268

Book Description
This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein–Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.

Hyperbolic Manifolds and Discrete Groups

Hyperbolic Manifolds and Discrete Groups PDF Author: Michael Kapovich
Publisher: Springer Science & Business Media
ISBN: 0817649131
Category : Mathematics
Languages : en
Pages : 486

Book Description
Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.

Hyperbolic Manifolds and Kleinian Groups

Hyperbolic Manifolds and Kleinian Groups PDF Author: Katsuhiko Matsuzaki
Publisher: Clarendon Press
ISBN: 0191591203
Category : Mathematics
Languages : en
Pages : 265

Book Description
A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Möbius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmüller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.

Several Complex Variables, Part 2

Several Complex Variables, Part 2 PDF Author: Raymond O'Neil Wells
Publisher: American Mathematical Soc.
ISBN: 082180250X
Category : Mathematics
Languages : en
Pages : 342

Book Description
Contains sections on Non compact complex manifolds, Differential geometry and complex analysis, Problems in approximation, Value distribution theory, Group representation and harmonic analysis, and Survey papers.

Manifolds and Geometry

Manifolds and Geometry PDF Author: P. de Bartolomeis
Publisher: Cambridge University Press
ISBN: 9780521562164
Category : Mathematics
Languages : en
Pages : 336

Book Description
This book brings together papers that cover a wide spectrum of areas and give an unsurpassed overview of research into differential geometry.