Hydrogen in Crystalline Semiconductors

Hydrogen in Crystalline Semiconductors PDF Author: Stephen J. Pearton
Publisher: Springer Science & Business Media
ISBN: 3642847781
Category : Science
Languages : en
Pages : 374

Book Description
vgl. Hardcoverausgabe.

Hydrogen in Semiconductors

Hydrogen in Semiconductors PDF Author: M. Stutzmann
Publisher: Elsevier
ISBN: 0444598839
Category : Science
Languages : en
Pages : 598

Book Description
Hydrogen on semiconductor surfaces has been an area of considerable activity over the last two decades. Structural, thermal, and dynamical properties of hydrogen chemisorbed on crystalline silicon and other semiconductors have been studied in great detail. These properties serve as a reference for related, but more complex systems such as hydrogen at multiple vacancies in crystalline semiconductors or at microvoids in amorphous samples. Interesting from a surface physics point of view is the fact that hydrogen as a monovalent element is an ideal terminator for unsaturated bonds on surfaces and therefore tends to have a large influence on surface reconstruction. A related phenomenon with large technological impact (for example in low cost solar cells) is the passivation of grain boundaries in microcrystalline semiconductors. Finally, hydrogenated semiconductor surfaces always appear as a boundary layer during low-energy hydrogenation of bulk semiconductors, so that a complete description of hydrogen uptake or desorption necessarily has to take these surfaces into account. This collection of invited and contributed papers has been carefully balanced to deal with amorphous and crystalline semiconductors and surfaces and presents basic and experimental work (basic and applied) as well as theory. The resulting volume presents a summary of the state-of-the-art in the field of hydrogen in semiconductors and will hopefully stimulate future work in this area.

Hydrogen in Semiconductors

Hydrogen in Semiconductors PDF Author: Jacques I. Pankove
Publisher: Academic Press
ISBN: 0080864317
Category : Technology & Engineering
Languages : en
Pages : 655

Book Description
Hydrogen plays an important role in silicon technology, having a profound effect on a wide range of properties. Thus, the study of hydrogen in semiconductors has received much attention from an interdisciplinary assortment of researchers. This sixteen-chapter volume provides a comprehensive review of the field, including a discussion of hydrogenation methods, the use of hydrogen to passivate defects, the use of hydrogen to neutralize deep levels, shallow acceptors and shallow donors in silicon, vibrational spectroscopy, and hydrogen-induced defects in silicon. In addition to this detailed coverage of hydrogen in silicon, chapters are provided that discuss hydrogen-related phenomena in germanium and the neutralization of defects and dopants in III*b1V semiconductors. Provides the most in-depth coverage of hydrogen in silicon available in a single source**Includes an extensive chapter on the neutralization of defects in III*b1V semiconductors**Combines both experimental and theoretical studies to form a comprehensive reference

Hydrogen in Semiconductors II

Hydrogen in Semiconductors II PDF Author:
Publisher: Academic Press
ISBN: 0080525253
Category : Science
Languages : en
Pages : 541

Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. - Provides the most in-depth coverage of hydrogen in silicon available in a single source - Includes an extensive chapter on the neutralization of defects in III*b1V semiconductors - Combines both experimental and theoretical studies to form a comprehensive reference

Physics Of Semiconductors, The - Proceedings Of The Xxi International Conference (In 2 Volumes)

Physics Of Semiconductors, The - Proceedings Of The Xxi International Conference (In 2 Volumes) PDF Author: Ping Jiang
Publisher: World Scientific
ISBN: 9814554065
Category :
Languages : en
Pages : 2151

Book Description
The 21st conference proceedings continue the tradition of the ICPS series. The proceedings cover all aspects of semiconductor physics, including those related to materials, processing and devices. Plenary and invited speakers address areas of major interest.

High Pressure Semiconductor Physics I

High Pressure Semiconductor Physics I PDF Author:
Publisher: Academic Press
ISBN: 008086452X
Category : Science
Languages : en
Pages : 593

Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. Volumes 54 and 55 present contributions by leading researchers in the field of high pressure semiconductors. Edited by T. Suski and W. Paul, these volumes continue the tradition of well-known but outdated publications such as Brigman's The Physics of High Pressure (1931 and 1949) and High Pressure Physics and Chemistry edited by Bradley. Volumes 54 and 55 reflect the industrially important recent developments in research and applications of semiconductor properties and behavior under desirable risk-free conditions at high pressures. These developments include the advent of the diamond anvil cell technique and the availability of commercial pistoncylinder apparatus operating at high hydrostatic pressures. These much-needed books will be useful to both researchers and practitioners in applied physics, materials science, and engineering.

High Pressure in Semiconductor Physics II

High Pressure in Semiconductor Physics II PDF Author:
Publisher: Academic Press
ISBN: 0080864538
Category : Science
Languages : en
Pages : 477

Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. Volumes 54 and 55 present contributions by leading researchers in the field of high pressure semiconductors. Edited by T. Suski and W. Paul, these volumes continue the tradition of well-known but outdated publications such as Brigman's The Physics of High Pressure (1931 and 1949) and High Pressure Physics and Chemistry edited by Bradley. Volumes 54 and 55 reflect the industrially important recent developments in research and applications of semiconductor properties and behavior under desirable risk-free conditions at high pressures. These developments include the advent of the diamond anvil cell technique and the availability of commercial pistoncylinder apparatus operating at high hydrostatic pressures. These much-needed books will be useful to both researchers and practitioners in applied physics, materials science, and engineering.

Optical Absorption of Impurities and Defects in Semiconducting Crystals

Optical Absorption of Impurities and Defects in Semiconducting Crystals PDF Author: Bernard Pajot
Publisher: Springer Science & Business Media
ISBN: 3642180183
Category : Science
Languages : en
Pages : 532

Book Description
This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.

Topics In Growth And Device Processing Of Iii-v Semiconductors

Topics In Growth And Device Processing Of Iii-v Semiconductors PDF Author: Cammy R Abernathy
Publisher: World Scientific
ISBN: 981450159X
Category : Science
Languages : en
Pages : 565

Book Description
This book describes advanced epitaxial growth and self-aligned processing techniques for the fabrication of III-V semiconductor devices such as heterojunction bipolar transistors and high electron mobility transistors. It is the first book to describe the use of carbon-doping and low damage dry etching techniques that have proved indispensable in making reliable, high performance devices. These devices are used in many applications such as cordless telephones and high speed lightwave communication systems.

Defects in Microelectronic Materials and Devices

Defects in Microelectronic Materials and Devices PDF Author: Daniel M. Fleetwood
Publisher: CRC Press
ISBN: 1420043773
Category : Science
Languages : en
Pages : 772

Book Description
Uncover the Defects that Compromise Performance and ReliabilityAs microelectronics features and devices become smaller and more complex, it is critical that engineers and technologists completely understand how components can be damaged during the increasingly complicated fabrication processes required to produce them.A comprehensive survey of defe