Hybridizable Discontinuous Galerkin Method for Curved Domains PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hybridizable Discontinuous Galerkin Method for Curved Domains PDF full book. Access full book title Hybridizable Discontinuous Galerkin Method for Curved Domains by Manuel Esteban Solano Palma. Download full books in PDF and EPUB format.

Hybridizable Discontinuous Galerkin Method for Curved Domains

Hybridizable Discontinuous Galerkin Method for Curved Domains PDF Author: Manuel Esteban Solano Palma
Publisher:
ISBN:
Category :
Languages : en
Pages : 75

Book Description


Hybridizable Discontinuous Galerkin Method for Curved Domains

Hybridizable Discontinuous Galerkin Method for Curved Domains PDF Author: Manuel Esteban Solano Palma
Publisher:
ISBN:
Category :
Languages : en
Pages : 75

Book Description


Boundary-conforming Discontinuous Galerkin Methods Via Extensions from Subdomains

Boundary-conforming Discontinuous Galerkin Methods Via Extensions from Subdomains PDF Author: Deepa Mahajan
Publisher:
ISBN:
Category :
Languages : en
Pages : 184

Book Description


hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes

hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes PDF Author: Andrea Cangiani
Publisher: Springer
ISBN: 3319676733
Category : Mathematics
Languages : en
Pages : 133

Book Description
Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios.

Multigrid Finite Element Methods for Electromagnetic Field Modeling

Multigrid Finite Element Methods for Electromagnetic Field Modeling PDF Author: Yu Zhu
Publisher: John Wiley & Sons
ISBN: 0471786373
Category : Science
Languages : en
Pages : 438

Book Description
This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Advances in Discretization Methods

Advances in Discretization Methods PDF Author: Giulio Ventura
Publisher: Springer
ISBN: 3319412469
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.

Implementation of an Implicit-explicit Scheme for Hybridizable Discontinuous Galerkin

Implementation of an Implicit-explicit Scheme for Hybridizable Discontinuous Galerkin PDF Author: Lauren Nicole Kolkman
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Book Description
Finite element methods, specifically Hybridizable Discontinuous Galerkin (HDG), are used in many applications. One choice made when implementing HDG for a specific problem is whether time integration should be performed implicitly or explicitly. Both approaches have their advantages but, for some problems, a combination of these methods is a better choice than either on their own. Thus, an implicit-explicit (IMEX) scheme that splits the computational domain into implicit and explicit regions based on the domain geometry is considered in this thesis. This allows for stability throughout the domain and exploits the advantages each scheme has to offer. A study of the convergence and properties of this implementation of the IMEX method is presented along with comparisons to the individual methods.

An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases

An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases PDF Author: Francis X. Giraldo
Publisher: Springer Nature
ISBN: 3030550699
Category : Mathematics
Languages : en
Pages : 559

Book Description
This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations.

An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method

An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method PDF Author: Shukai Du
Publisher: Springer Nature
ISBN: 3030272303
Category : Mathematics
Languages : en
Pages : 124

Book Description
This monograph requires basic knowledge of the variational theory of elliptic PDE and the techniques used for the analysis of the Finite Element Method. However, all the tools for the analysis of FEM (scaling arguments, finite dimensional estimates in the reference configuration, Piola transforms) are carefully introduced before being used, so that the reader does not need to go over longforgotten textbooks. Readers include: computational mathematicians, numerical analysts, engineers and scientists interested in new and computationally competitive Discontinuous Galerkin methods. The intended audience includes graduate students in computational mathematics, physics, and engineering, since the prerequisites are quite basic for a second year graduate student who has already taken a non necessarily advanced class in the Finite Element method.

Superconvergent Discontinuous Galerkin Methods for Elliptic Problems

Superconvergent Discontinuous Galerkin Methods for Elliptic Problems PDF Author: Bo Dong
Publisher:
ISBN:
Category :
Languages : en
Pages : 288

Book Description


Numerical Mathematics and Advanced Applications ENUMATH 2019

Numerical Mathematics and Advanced Applications ENUMATH 2019 PDF Author: Fred J. Vermolen
Publisher: Springer Nature
ISBN: 3030558746
Category : Mathematics
Languages : en
Pages : 1185

Book Description
This book gathers outstanding papers presented at the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2019). The conference was organized by Delft University of Technology and was held in Egmond aan Zee, the Netherlands, from September 30 to October 4, 2019. Leading experts in the field presented the latest results and ideas regarding the design, implementation and analysis of numerical algorithms, as well as their applications to relevant societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications, all examined at the highest level of international expertise. The first ENUMATH was held in Paris in 1995, with successive installments at various sites across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017).