Author: Taylor Arnold
Publisher: Springer Nature
ISBN: 3031625668
Category :
Languages : en
Pages : 287
Book Description
Humanities Data in R
Author: Taylor Arnold
Publisher: Springer Nature
ISBN: 3031625668
Category :
Languages : en
Pages : 287
Book Description
Publisher: Springer Nature
ISBN: 3031625668
Category :
Languages : en
Pages : 287
Book Description
Humanities Data Analysis
Author: Folgert Karsdorp
Publisher: Princeton University Press
ISBN: 0691172366
Category : Computers
Languages : en
Pages : 352
Book Description
A practical guide to data-intensive humanities research using the Python programming language The use of quantitative methods in the humanities and related social sciences has increased considerably in recent years, allowing researchers to discover patterns in a vast range of source materials. Despite this growth, there are few resources addressed to students and scholars who wish to take advantage of these powerful tools. Humanities Data Analysis offers the first intermediate-level guide to quantitative data analysis for humanities students and scholars using the Python programming language. This practical textbook, which assumes a basic knowledge of Python, teaches readers the necessary skills for conducting humanities research in the rapidly developing digital environment. The book begins with an overview of the place of data science in the humanities, and proceeds to cover data carpentry: the essential techniques for gathering, cleaning, representing, and transforming textual and tabular data. Then, drawing from real-world, publicly available data sets that cover a variety of scholarly domains, the book delves into detailed case studies. Focusing on textual data analysis, the authors explore such diverse topics as network analysis, genre theory, onomastics, literacy, author attribution, mapping, stylometry, topic modeling, and time series analysis. Exercises and resources for further reading are provided at the end of each chapter. An ideal resource for humanities students and scholars aiming to take their Python skills to the next level, Humanities Data Analysis illustrates the benefits that quantitative methods can bring to complex research questions. Appropriate for advanced undergraduates, graduate students, and scholars with a basic knowledge of Python Applicable to many humanities disciplines, including history, literature, and sociology Offers real-world case studies using publicly available data sets Provides exercises at the end of each chapter for students to test acquired skills Emphasizes visual storytelling via data visualizations
Publisher: Princeton University Press
ISBN: 0691172366
Category : Computers
Languages : en
Pages : 352
Book Description
A practical guide to data-intensive humanities research using the Python programming language The use of quantitative methods in the humanities and related social sciences has increased considerably in recent years, allowing researchers to discover patterns in a vast range of source materials. Despite this growth, there are few resources addressed to students and scholars who wish to take advantage of these powerful tools. Humanities Data Analysis offers the first intermediate-level guide to quantitative data analysis for humanities students and scholars using the Python programming language. This practical textbook, which assumes a basic knowledge of Python, teaches readers the necessary skills for conducting humanities research in the rapidly developing digital environment. The book begins with an overview of the place of data science in the humanities, and proceeds to cover data carpentry: the essential techniques for gathering, cleaning, representing, and transforming textual and tabular data. Then, drawing from real-world, publicly available data sets that cover a variety of scholarly domains, the book delves into detailed case studies. Focusing on textual data analysis, the authors explore such diverse topics as network analysis, genre theory, onomastics, literacy, author attribution, mapping, stylometry, topic modeling, and time series analysis. Exercises and resources for further reading are provided at the end of each chapter. An ideal resource for humanities students and scholars aiming to take their Python skills to the next level, Humanities Data Analysis illustrates the benefits that quantitative methods can bring to complex research questions. Appropriate for advanced undergraduates, graduate students, and scholars with a basic knowledge of Python Applicable to many humanities disciplines, including history, literature, and sociology Offers real-world case studies using publicly available data sets Provides exercises at the end of each chapter for students to test acquired skills Emphasizes visual storytelling via data visualizations
Text Analysis with R
Author: Matthew L. Jockers
Publisher: Springer Nature
ISBN: 3030396436
Category : Computers
Languages : en
Pages : 283
Book Description
Now in its second edition, Text Analysis with R provides a practical introduction to computational text analysis using the open source programming language R. R is an extremely popular programming language, used throughout the sciences; due to its accessibility, R is now used increasingly in other research areas. In this volume, readers immediately begin working with text, and each chapter examines a new technique or process, allowing readers to obtain a broad exposure to core R procedures and a fundamental understanding of the possibilities of computational text analysis at both the micro and the macro scale. Each chapter builds on its predecessor as readers move from small scale “microanalysis” of single texts to large scale “macroanalysis” of text corpora, and each concludes with a set of practice exercises that reinforce and expand upon the chapter lessons. The book’s focus is on making the technical palatable and making the technical useful and immediately gratifying. Text Analysis with R is written with students and scholars of literature in mind but will be applicable to other humanists and social scientists wishing to extend their methodological toolkit to include quantitative and computational approaches to the study of text. Computation provides access to information in text that readers simply cannot gather using traditional qualitative methods of close reading and human synthesis. This new edition features two new chapters: one that introduces dplyr and tidyr in the context of parsing and analyzing dramatic texts to extract speaker and receiver data, and one on sentiment analysis using the syuzhet package. It is also filled with updated material in every chapter to integrate new developments in the field, current practices in R style, and the use of more efficient algorithms.
Publisher: Springer Nature
ISBN: 3030396436
Category : Computers
Languages : en
Pages : 283
Book Description
Now in its second edition, Text Analysis with R provides a practical introduction to computational text analysis using the open source programming language R. R is an extremely popular programming language, used throughout the sciences; due to its accessibility, R is now used increasingly in other research areas. In this volume, readers immediately begin working with text, and each chapter examines a new technique or process, allowing readers to obtain a broad exposure to core R procedures and a fundamental understanding of the possibilities of computational text analysis at both the micro and the macro scale. Each chapter builds on its predecessor as readers move from small scale “microanalysis” of single texts to large scale “macroanalysis” of text corpora, and each concludes with a set of practice exercises that reinforce and expand upon the chapter lessons. The book’s focus is on making the technical palatable and making the technical useful and immediately gratifying. Text Analysis with R is written with students and scholars of literature in mind but will be applicable to other humanists and social scientists wishing to extend their methodological toolkit to include quantitative and computational approaches to the study of text. Computation provides access to information in text that readers simply cannot gather using traditional qualitative methods of close reading and human synthesis. This new edition features two new chapters: one that introduces dplyr and tidyr in the context of parsing and analyzing dramatic texts to extract speaker and receiver data, and one on sentiment analysis using the syuzhet package. It is also filled with updated material in every chapter to integrate new developments in the field, current practices in R style, and the use of more efficient algorithms.
Humanities Data in R
Author: Taylor Arnold
Publisher: Springer
ISBN: 3319207024
Category : Computers
Languages : en
Pages : 218
Book Description
This pioneering book teaches readers to use R within four core analytical areas applicable to the Humanities: networks, text, geospatial data, and images. This book is also designed to be a bridge: between quantitative and qualitative methods, individual and collaborative work, and the humanities and social sciences. Humanities Data with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis (continuous and categorical data, multivariate analysis, and advanced graphics with emphasis on aesthetics and facility). Following this, networks, geospatial data, image data, natural language processing and text analysis each have a dedicated chapter. Each chapter is grounded in examples to move readers beyond the intimidation of adding new tools to their research. Everything is hands-on: networks are explained using U.S. Supreme Court opinions, and low-level NLP methods are applied to short stories by Sir Arthur Conan Doyle. After working through these examples with the provided data, code and book website, readers are prepared to apply new methods to their own work. The open source R programming language, with its myriad packages and popularity within the sciences and social sciences, is particularly well-suited to working with humanities data. R packages are also highlighted in an appendix. This book uses an expanded conception of the forms data may take and the information it represents. The methodology will have wide application in classrooms and self-study for the humanities, but also for use in linguistics, anthropology, and political science. Outside the classroom, this intersection of humanities and computing is particularly relevant for research and new modes of dissemination across archives, museums and libraries.
Publisher: Springer
ISBN: 3319207024
Category : Computers
Languages : en
Pages : 218
Book Description
This pioneering book teaches readers to use R within four core analytical areas applicable to the Humanities: networks, text, geospatial data, and images. This book is also designed to be a bridge: between quantitative and qualitative methods, individual and collaborative work, and the humanities and social sciences. Humanities Data with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis (continuous and categorical data, multivariate analysis, and advanced graphics with emphasis on aesthetics and facility). Following this, networks, geospatial data, image data, natural language processing and text analysis each have a dedicated chapter. Each chapter is grounded in examples to move readers beyond the intimidation of adding new tools to their research. Everything is hands-on: networks are explained using U.S. Supreme Court opinions, and low-level NLP methods are applied to short stories by Sir Arthur Conan Doyle. After working through these examples with the provided data, code and book website, readers are prepared to apply new methods to their own work. The open source R programming language, with its myriad packages and popularity within the sciences and social sciences, is particularly well-suited to working with humanities data. R packages are also highlighted in an appendix. This book uses an expanded conception of the forms data may take and the information it represents. The methodology will have wide application in classrooms and self-study for the humanities, but also for use in linguistics, anthropology, and political science. Outside the classroom, this intersection of humanities and computing is particularly relevant for research and new modes of dissemination across archives, museums and libraries.
The Shape of Data in Digital Humanities
Author: Julia Flanders
Publisher: Routledge
ISBN: 1317016149
Category : Language Arts & Disciplines
Languages : en
Pages : 373
Book Description
Data and its technologies now play a large and growing role in humanities research and teaching. This book addresses the needs of humanities scholars who seek deeper expertise in the area of data modeling and representation. The authors, all experts in digital humanities, offer a clear explanation of key technical principles, a grounded discussion of case studies, and an exploration of important theoretical concerns. The book opens with an orientation, giving the reader a history of data modeling in the humanities and a grounding in the technical concepts necessary to understand and engage with the second part of the book. The second part of the book is a wide-ranging exploration of topics central for a deeper understanding of data modeling in digital humanities. Chapters cover data modeling standards and the role they play in shaping digital humanities practice, traditional forms of modeling in the humanities and how they have been transformed by digital approaches, ontologies which seek to anchor meaning in digital humanities resources, and how data models inhabit the other analytical tools used in digital humanities research. It concludes with a glossary chapter that explains specific terms and concepts for data modeling in the digital humanities context. This book is a unique and invaluable resource for teaching and practising data modeling in a digital humanities context.
Publisher: Routledge
ISBN: 1317016149
Category : Language Arts & Disciplines
Languages : en
Pages : 373
Book Description
Data and its technologies now play a large and growing role in humanities research and teaching. This book addresses the needs of humanities scholars who seek deeper expertise in the area of data modeling and representation. The authors, all experts in digital humanities, offer a clear explanation of key technical principles, a grounded discussion of case studies, and an exploration of important theoretical concerns. The book opens with an orientation, giving the reader a history of data modeling in the humanities and a grounding in the technical concepts necessary to understand and engage with the second part of the book. The second part of the book is a wide-ranging exploration of topics central for a deeper understanding of data modeling in digital humanities. Chapters cover data modeling standards and the role they play in shaping digital humanities practice, traditional forms of modeling in the humanities and how they have been transformed by digital approaches, ontologies which seek to anchor meaning in digital humanities resources, and how data models inhabit the other analytical tools used in digital humanities research. It concludes with a glossary chapter that explains specific terms and concepts for data modeling in the digital humanities context. This book is a unique and invaluable resource for teaching and practising data modeling in a digital humanities context.
Big Data in Computational Social Science and Humanities
Author: Shu-Heng Chen
Publisher: Springer
ISBN: 3319954652
Category : Computers
Languages : en
Pages : 391
Book Description
This edited volume focuses on big data implications for computational social science and humanities from management to usage. The first part of the book covers geographic data, text corpus data, and social media data, and exemplifies their concrete applications in a wide range of fields including anthropology, economics, finance, geography, history, linguistics, political science, psychology, public health, and mass communications. The second part of the book provides a panoramic view of the development of big data in the fields of computational social sciences and humanities. The following questions are addressed: why is there a need for novel data governance for this new type of data?, why is big data important for social scientists?, and how will it revolutionize the way social scientists conduct research? With the advent of the information age and technologies such as Web 2.0, ubiquitous computing, wearable devices, and the Internet of Things, digital society has fundamentally changed what we now know as "data", the very use of this data, and what we now call "knowledge". Big data has become the standard in social sciences, and has made these sciences more computational. Big Data in Computational Social Science and Humanities will appeal to graduate students and researchers working in the many subfields of the social sciences and humanities.
Publisher: Springer
ISBN: 3319954652
Category : Computers
Languages : en
Pages : 391
Book Description
This edited volume focuses on big data implications for computational social science and humanities from management to usage. The first part of the book covers geographic data, text corpus data, and social media data, and exemplifies their concrete applications in a wide range of fields including anthropology, economics, finance, geography, history, linguistics, political science, psychology, public health, and mass communications. The second part of the book provides a panoramic view of the development of big data in the fields of computational social sciences and humanities. The following questions are addressed: why is there a need for novel data governance for this new type of data?, why is big data important for social scientists?, and how will it revolutionize the way social scientists conduct research? With the advent of the information age and technologies such as Web 2.0, ubiquitous computing, wearable devices, and the Internet of Things, digital society has fundamentally changed what we now know as "data", the very use of this data, and what we now call "knowledge". Big data has become the standard in social sciences, and has made these sciences more computational. Big Data in Computational Social Science and Humanities will appeal to graduate students and researchers working in the many subfields of the social sciences and humanities.
Scientometrics for the Humanities and Social Sciences
Author: R. Sooryamoorthy
Publisher: Routledge
ISBN: 1000258106
Category : Psychology
Languages : en
Pages : 253
Book Description
Scientometrics for the Humanities and Social Sciences is the first ever book on scientometrics that deals with the historical development of both quantitative and qualitative data analysis in scientometric studies. It focuses on its applicability in new and emerging areas of inquiry. This important book presents the inherent potential for data mining and analysis of qualitative data in scientometrics. The author provides select cases of scientometric studies in the humanities and social sciences, explaining their research objectives, sources of data and methodologies. It illustrates how data can be gathered not only from prominent online databases and repositories, but also from journals that are not stored in these databases. With the support of specific examples, the book shows how data on demographic variables can be collected to supplement scientometric data. The book deals with a research methodology which has an increasing applicability not only to the study of science, but also to the study of the disciplines in the humanities and social sciences.
Publisher: Routledge
ISBN: 1000258106
Category : Psychology
Languages : en
Pages : 253
Book Description
Scientometrics for the Humanities and Social Sciences is the first ever book on scientometrics that deals with the historical development of both quantitative and qualitative data analysis in scientometric studies. It focuses on its applicability in new and emerging areas of inquiry. This important book presents the inherent potential for data mining and analysis of qualitative data in scientometrics. The author provides select cases of scientometric studies in the humanities and social sciences, explaining their research objectives, sources of data and methodologies. It illustrates how data can be gathered not only from prominent online databases and repositories, but also from journals that are not stored in these databases. With the support of specific examples, the book shows how data on demographic variables can be collected to supplement scientometric data. The book deals with a research methodology which has an increasing applicability not only to the study of science, but also to the study of the disciplines in the humanities and social sciences.
Doing Digital Humanities
Author: Constance Crompton
Publisher: Routledge
ISBN: 1317481127
Category : Literary Criticism
Languages : en
Pages : 481
Book Description
Digital Humanities is rapidly evolving as a significant approach to/method of teaching, learning and research across the humanities. This is a first-stop book for people interested in getting to grips with digital humanities whether as a student or a professor. The book offers a practical guide to the area as well as offering reflection on the main objectives and processes, including: Accessible introductions of the basics of Digital Humanities through to more complex ideas A wide range of topics from feminist Digital Humanities, digital journal publishing, gaming, text encoding, project management and pedagogy Contextualised case studies Resources for starting Digital Humanities such as links, training materials and exercises Doing Digital Humanities looks at the practicalities of how digital research and creation can enhance both learning and research and offers an approachable way into this complex, yet essential topic.
Publisher: Routledge
ISBN: 1317481127
Category : Literary Criticism
Languages : en
Pages : 481
Book Description
Digital Humanities is rapidly evolving as a significant approach to/method of teaching, learning and research across the humanities. This is a first-stop book for people interested in getting to grips with digital humanities whether as a student or a professor. The book offers a practical guide to the area as well as offering reflection on the main objectives and processes, including: Accessible introductions of the basics of Digital Humanities through to more complex ideas A wide range of topics from feminist Digital Humanities, digital journal publishing, gaming, text encoding, project management and pedagogy Contextualised case studies Resources for starting Digital Humanities such as links, training materials and exercises Doing Digital Humanities looks at the practicalities of how digital research and creation can enhance both learning and research and offers an approachable way into this complex, yet essential topic.
Modeling Psychophysical Data in R
Author: Kenneth Knoblauch
Publisher: Springer Science & Business Media
ISBN: 1461444756
Category : Computers
Languages : en
Pages : 376
Book Description
Many of the commonly used methods for modeling and fitting psychophysical data are special cases of statistical procedures of great power and generality, notably the Generalized Linear Model (GLM). This book illustrates how to fit data from a variety of psychophysical paradigms using modern statistical methods and the statistical language R. The paradigms include signal detection theory, psychometric function fitting, classification images and more. In two chapters, recently developed methods for scaling appearance, maximum likelihood difference scaling and maximum likelihood conjoint measurement are examined. The authors also consider the application of mixed-effects models to psychophysical data. R is an open-source programming language that is widely used by statisticians and is seeing enormous growth in its application to data in all fields. It is interactive, containing many powerful facilities for optimization, model evaluation, model selection, and graphical display of data. The reader who fits data in R can readily make use of these methods. The researcher who uses R to fit and model his data has access to most recently developed statistical methods. This book does not assume that the reader is familiar with R, and a little experience with any programming language is all that is needed to appreciate this book. There are large numbers of examples of R in the text and the source code for all examples is available in an R package MPDiR available through R. Kenneth Knoblauch is a researcher in the Department of Integrative Neurosciences in Inserm Unit 846, The Stem Cell and Brain Research Institute and associated with the University Claude Bernard, Lyon 1, in France. Laurence T. Maloney is Professor of Psychology and Neural Science at New York University. His research focusses on applications of mathematical models to perception, motor control and decision making.
Publisher: Springer Science & Business Media
ISBN: 1461444756
Category : Computers
Languages : en
Pages : 376
Book Description
Many of the commonly used methods for modeling and fitting psychophysical data are special cases of statistical procedures of great power and generality, notably the Generalized Linear Model (GLM). This book illustrates how to fit data from a variety of psychophysical paradigms using modern statistical methods and the statistical language R. The paradigms include signal detection theory, psychometric function fitting, classification images and more. In two chapters, recently developed methods for scaling appearance, maximum likelihood difference scaling and maximum likelihood conjoint measurement are examined. The authors also consider the application of mixed-effects models to psychophysical data. R is an open-source programming language that is widely used by statisticians and is seeing enormous growth in its application to data in all fields. It is interactive, containing many powerful facilities for optimization, model evaluation, model selection, and graphical display of data. The reader who fits data in R can readily make use of these methods. The researcher who uses R to fit and model his data has access to most recently developed statistical methods. This book does not assume that the reader is familiar with R, and a little experience with any programming language is all that is needed to appreciate this book. There are large numbers of examples of R in the text and the source code for all examples is available in an R package MPDiR available through R. Kenneth Knoblauch is a researcher in the Department of Integrative Neurosciences in Inserm Unit 846, The Stem Cell and Brain Research Institute and associated with the University Claude Bernard, Lyon 1, in France. Laurence T. Maloney is Professor of Psychology and Neural Science at New York University. His research focusses on applications of mathematical models to perception, motor control and decision making.
A Companion to Digital Humanities
Author: Susan Schreibman
Publisher: John Wiley & Sons
ISBN: 1405168064
Category : Literary Criticism
Languages : en
Pages : 642
Book Description
This Companion offers a thorough, concise overview of the emerging field of humanities computing. Contains 37 original articles written by leaders in the field. Addresses the central concerns shared by those interested in the subject. Major sections focus on the experience of particular disciplines in applying computational methods to research problems; the basic principles of humanities computing; specific applications and methods; and production, dissemination and archiving. Accompanied by a website featuring supplementary materials, standard readings in the field and essays to be included in future editions of the Companion.
Publisher: John Wiley & Sons
ISBN: 1405168064
Category : Literary Criticism
Languages : en
Pages : 642
Book Description
This Companion offers a thorough, concise overview of the emerging field of humanities computing. Contains 37 original articles written by leaders in the field. Addresses the central concerns shared by those interested in the subject. Major sections focus on the experience of particular disciplines in applying computational methods to research problems; the basic principles of humanities computing; specific applications and methods; and production, dissemination and archiving. Accompanied by a website featuring supplementary materials, standard readings in the field and essays to be included in future editions of the Companion.