Author: Liang Lin
Publisher: Springer Nature
ISBN: 9811323879
Category : Computers
Languages : en
Pages : 160
Book Description
This book introduces the applications of deep learning in various human centric visual analysis tasks, including classical ones like face detection and alignment and some newly rising tasks like fashion clothing parsing. Starting from an overview of current research in human centric visual analysis, the book then presents a tutorial of basic concepts and techniques of deep learning. In addition, the book systematically investigates the main human centric analysis tasks of different levels, ranging from detection and segmentation to parsing and higher-level understanding. At last, it presents the state-of-the-art solutions based on deep learning for every task, as well as providing sufficient references and extensive discussions. Specifically, this book addresses four important research topics, including 1) localizing persons in images, such as face and pedestrian detection; 2) parsing persons in details, such as human pose and clothing parsing, 3) identifying and verifying persons, such as face and human identification, and 4) high-level human centric tasks, such as person attributes and human activity understanding. This book can serve as reading material and reference text for academic professors / students or industrial engineers working in the field of vision surveillance, biometrics, and human-computer interaction, where human centric visual analysis are indispensable in analysing human identity, pose, attributes, and behaviours for further understanding.
Human Centric Visual Analysis with Deep Learning
Author: Liang Lin
Publisher: Springer Nature
ISBN: 9811323879
Category : Computers
Languages : en
Pages : 160
Book Description
This book introduces the applications of deep learning in various human centric visual analysis tasks, including classical ones like face detection and alignment and some newly rising tasks like fashion clothing parsing. Starting from an overview of current research in human centric visual analysis, the book then presents a tutorial of basic concepts and techniques of deep learning. In addition, the book systematically investigates the main human centric analysis tasks of different levels, ranging from detection and segmentation to parsing and higher-level understanding. At last, it presents the state-of-the-art solutions based on deep learning for every task, as well as providing sufficient references and extensive discussions. Specifically, this book addresses four important research topics, including 1) localizing persons in images, such as face and pedestrian detection; 2) parsing persons in details, such as human pose and clothing parsing, 3) identifying and verifying persons, such as face and human identification, and 4) high-level human centric tasks, such as person attributes and human activity understanding. This book can serve as reading material and reference text for academic professors / students or industrial engineers working in the field of vision surveillance, biometrics, and human-computer interaction, where human centric visual analysis are indispensable in analysing human identity, pose, attributes, and behaviours for further understanding.
Publisher: Springer Nature
ISBN: 9811323879
Category : Computers
Languages : en
Pages : 160
Book Description
This book introduces the applications of deep learning in various human centric visual analysis tasks, including classical ones like face detection and alignment and some newly rising tasks like fashion clothing parsing. Starting from an overview of current research in human centric visual analysis, the book then presents a tutorial of basic concepts and techniques of deep learning. In addition, the book systematically investigates the main human centric analysis tasks of different levels, ranging from detection and segmentation to parsing and higher-level understanding. At last, it presents the state-of-the-art solutions based on deep learning for every task, as well as providing sufficient references and extensive discussions. Specifically, this book addresses four important research topics, including 1) localizing persons in images, such as face and pedestrian detection; 2) parsing persons in details, such as human pose and clothing parsing, 3) identifying and verifying persons, such as face and human identification, and 4) high-level human centric tasks, such as person attributes and human activity understanding. This book can serve as reading material and reference text for academic professors / students or industrial engineers working in the field of vision surveillance, biometrics, and human-computer interaction, where human centric visual analysis are indispensable in analysing human identity, pose, attributes, and behaviours for further understanding.
Smart Applications and Data Analysis
Author: Mohamed Hamlich
Publisher: Springer Nature
ISBN: 3030451836
Category : Computers
Languages : en
Pages : 366
Book Description
This volume constitutes refereed proceedings of the Third International Conference on Smart Applications and Data Analysis, SADASC 2020, held in Marrakesh, Morocco. Due to the COVID-19 pandemic the conference has been postponed to June 2020. The 24 full papers and 3 short papers presented were thoroughly reviewed and selected from 44 submissions. The papers are organized according to the following topics: ontologies and meta modeling; cyber physical systems and block-chains; recommender systems; machine learning based applications; combinatorial optimization; simulations and deep learning.
Publisher: Springer Nature
ISBN: 3030451836
Category : Computers
Languages : en
Pages : 366
Book Description
This volume constitutes refereed proceedings of the Third International Conference on Smart Applications and Data Analysis, SADASC 2020, held in Marrakesh, Morocco. Due to the COVID-19 pandemic the conference has been postponed to June 2020. The 24 full papers and 3 short papers presented were thoroughly reviewed and selected from 44 submissions. The papers are organized according to the following topics: ontologies and meta modeling; cyber physical systems and block-chains; recommender systems; machine learning based applications; combinatorial optimization; simulations and deep learning.
Learning Control
Author: Dan Zhang
Publisher: Elsevier
ISBN: 0128223154
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length. - Provides foundational control theory concepts, along with advanced techniques and the latest advances in adaptive control and robotics - Introduces state-of-the-art learning-based control technologies and their applications in robotics and other complex dynamical systems - Demonstrates computational techniques for control systems - Covers iterative learning impedance control in both human-robot interaction and collaborative robots
Publisher: Elsevier
ISBN: 0128223154
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length. - Provides foundational control theory concepts, along with advanced techniques and the latest advances in adaptive control and robotics - Introduces state-of-the-art learning-based control technologies and their applications in robotics and other complex dynamical systems - Demonstrates computational techniques for control systems - Covers iterative learning impedance control in both human-robot interaction and collaborative robots
Orthogonal Image Moments for Human-Centric Visual Pattern Recognition
Author: S. M. Mahbubur Rahman
Publisher: Springer Nature
ISBN: 9813299452
Category : Computers
Languages : en
Pages : 157
Book Description
Instead of focusing on the mathematical properties of moments, this book is a compendium of research that demonstrates the effectiveness of orthogonal moment-based features in face recognition, expression recognition, fingerprint recognition and iris recognition. The usefulness of moments and their invariants in pattern recognition is well known. What is less well known is how orthogonal moments may be applied to specific problems in human-centric visual pattern recognition. Unlike previous books, this work highlights the fundamental issues involved in moment-based pattern recognition, from the selection of discriminative features in a high-dimensional setting, to addressing the question of how to classify a large number of patterns based on small training samples. In addition to offering new concepts that illustrate the use of statistical methods in addressing some of these issues, the book presents recent results and provides guidance on implementing the methods. Accordingly, it will be of interest to researchers and graduate students working in the broad areas of computer vision and visual pattern recognition.
Publisher: Springer Nature
ISBN: 9813299452
Category : Computers
Languages : en
Pages : 157
Book Description
Instead of focusing on the mathematical properties of moments, this book is a compendium of research that demonstrates the effectiveness of orthogonal moment-based features in face recognition, expression recognition, fingerprint recognition and iris recognition. The usefulness of moments and their invariants in pattern recognition is well known. What is less well known is how orthogonal moments may be applied to specific problems in human-centric visual pattern recognition. Unlike previous books, this work highlights the fundamental issues involved in moment-based pattern recognition, from the selection of discriminative features in a high-dimensional setting, to addressing the question of how to classify a large number of patterns based on small training samples. In addition to offering new concepts that illustrate the use of statistical methods in addressing some of these issues, the book presents recent results and provides guidance on implementing the methods. Accordingly, it will be of interest to researchers and graduate students working in the broad areas of computer vision and visual pattern recognition.
Human-Centered AI
Author: Ben Shneiderman
Publisher: Oxford University Press
ISBN: 0192845292
Category : Computers
Languages : en
Pages : 390
Book Description
The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity.
Publisher: Oxford University Press
ISBN: 0192845292
Category : Computers
Languages : en
Pages : 390
Book Description
The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity.
Human-Like Machine Intelligence
Author: Stephen Muggleton
Publisher: Oxford University Press
ISBN: 0192607464
Category : Computers
Languages : en
Pages : 560
Book Description
In recent years there has been increasing excitement concerning the potential of Artificial Intelligence to transform human society. This book addresses the leading edge of research in this area. The research described aims to address present incompatibilities of Human and Machine reasoning and learning approaches. According to the influential US funding agency DARPA (originator of the Internet and Self-Driving Cars) this new area represents the Third Wave of Artificial Intelligence (3AI, 2020s-2030s), and is being actively investigated in the US, Europe and China. The chapters of this book have been authored by a mixture of UK and other international specialists. Some of the key questions addressed by the Human-Like Computing programme include how AI systems might 1) explain their decisions effectively, 2) interact with human beings in natural language, 3) learn from small numbers of examples and 4) learn with minimal supervision. Solving such fundamental problems involves new foundational research in both the Psychology of perception and interaction as well as the development of novel algorithmic approaches in Artificial Intelligence.
Publisher: Oxford University Press
ISBN: 0192607464
Category : Computers
Languages : en
Pages : 560
Book Description
In recent years there has been increasing excitement concerning the potential of Artificial Intelligence to transform human society. This book addresses the leading edge of research in this area. The research described aims to address present incompatibilities of Human and Machine reasoning and learning approaches. According to the influential US funding agency DARPA (originator of the Internet and Self-Driving Cars) this new area represents the Third Wave of Artificial Intelligence (3AI, 2020s-2030s), and is being actively investigated in the US, Europe and China. The chapters of this book have been authored by a mixture of UK and other international specialists. Some of the key questions addressed by the Human-Like Computing programme include how AI systems might 1) explain their decisions effectively, 2) interact with human beings in natural language, 3) learn from small numbers of examples and 4) learn with minimal supervision. Solving such fundamental problems involves new foundational research in both the Psychology of perception and interaction as well as the development of novel algorithmic approaches in Artificial Intelligence.
Proceedings of the 22nd Engineering Applications of Neural Networks Conference
Author: Lazaros Iliadis
Publisher: Springer Nature
ISBN: 3030805689
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
This book contains the proceedings of the 22nd EANN “Engineering Applications of Neural Networks” 2021 that comprise of research papers on both theoretical foundations and cutting-edge applications of artificial intelligence. Based on the discussed research areas, emphasis is given in advances of machine learning (ML) focusing on the following algorithms-approaches: Augmented ML, autoencoders, adversarial neural networks, blockchain-adaptive methods, convolutional neural networks, deep learning, ensemble methods, learning-federated learning, neural networks, recurrent – long short-term memory. The application domains are related to: Anomaly detection, bio-medical AI, cyber-security, data fusion, e-learning, emotion recognition, environment, hyperspectral imaging, fraud detection, image analysis, inverse kinematics, machine vision, natural language, recommendation systems, robotics, sentiment analysis, simulation, stock market prediction.
Publisher: Springer Nature
ISBN: 3030805689
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
This book contains the proceedings of the 22nd EANN “Engineering Applications of Neural Networks” 2021 that comprise of research papers on both theoretical foundations and cutting-edge applications of artificial intelligence. Based on the discussed research areas, emphasis is given in advances of machine learning (ML) focusing on the following algorithms-approaches: Augmented ML, autoencoders, adversarial neural networks, blockchain-adaptive methods, convolutional neural networks, deep learning, ensemble methods, learning-federated learning, neural networks, recurrent – long short-term memory. The application domains are related to: Anomaly detection, bio-medical AI, cyber-security, data fusion, e-learning, emotion recognition, environment, hyperspectral imaging, fraud detection, image analysis, inverse kinematics, machine vision, natural language, recommendation systems, robotics, sentiment analysis, simulation, stock market prediction.
Interpretable Artificial Intelligence: A Perspective of Granular Computing
Author: Witold Pedrycz
Publisher: Springer Nature
ISBN: 3030649490
Category : Technology & Engineering
Languages : en
Pages : 430
Book Description
This book offers a comprehensive treatise on the recent pursuits of Artificial Intelligence (AI) – Explainable Artificial Intelligence (XAI) by casting the crucial features of interpretability and explainability in the original framework of Granular Computing. The innovative perspective established with the aid of information granules provides a high level of human centricity and transparency central to the development of AI constructs. The chapters reflect the breadth of the area and cover recent developments in the methodology, advanced algorithms and applications of XAI to visual analytics, knowledge representation, learning and interpretation. The book appeals to a broad audience including researchers and practitioners interested in gaining exposure to the rapidly growing body of knowledge in AI and intelligent systems.
Publisher: Springer Nature
ISBN: 3030649490
Category : Technology & Engineering
Languages : en
Pages : 430
Book Description
This book offers a comprehensive treatise on the recent pursuits of Artificial Intelligence (AI) – Explainable Artificial Intelligence (XAI) by casting the crucial features of interpretability and explainability in the original framework of Granular Computing. The innovative perspective established with the aid of information granules provides a high level of human centricity and transparency central to the development of AI constructs. The chapters reflect the breadth of the area and cover recent developments in the methodology, advanced algorithms and applications of XAI to visual analytics, knowledge representation, learning and interpretation. The book appeals to a broad audience including researchers and practitioners interested in gaining exposure to the rapidly growing body of knowledge in AI and intelligent systems.
Human-Centered Metaverse and Digital Environments
Author: Matteo Zallio
Publisher: AHFE International
ISBN: 1958651753
Category : Technology & Engineering
Languages : en
Pages : 137
Book Description
Proceedings of the 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023), July 20–24, 2023, San Francisco, USA
Publisher: AHFE International
ISBN: 1958651753
Category : Technology & Engineering
Languages : en
Pages : 137
Book Description
Proceedings of the 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023), July 20–24, 2023, San Francisco, USA
Deep Learning
Author: Andrew Glassner
Publisher: No Starch Press
ISBN: 1718500734
Category : Computers
Languages : en
Pages : 1315
Book Description
A richly-illustrated, full-color introduction to deep learning that offers visual and conceptual explanations instead of equations. You'll learn how to use key deep learning algorithms without the need for complex math. Ever since computers began beating us at chess, they've been getting better at a wide range of human activities, from writing songs and generating news articles to helping doctors provide healthcare. Deep learning is the source of many of these breakthroughs, and its remarkable ability to find patterns hiding in data has made it the fastest growing field in artificial intelligence (AI). Digital assistants on our phones use deep learning to understand and respond intelligently to voice commands; automotive systems use it to safely navigate road hazards; online platforms use it to deliver personalized suggestions for movies and books - the possibilities are endless. Deep Learning: A Visual Approach is for anyone who wants to understand this fascinating field in depth, but without any of the advanced math and programming usually required to grasp its internals. If you want to know how these tools work, and use them yourself, the answers are all within these pages. And, if you're ready to write your own programs, there are also plenty of supplemental Python notebooks in the accompanying Github repository to get you going. The book's conversational style, extensive color illustrations, illuminating analogies, and real-world examples expertly explain the key concepts in deep learning, including: • How text generators create novel stories and articles • How deep learning systems learn to play and win at human games • How image classification systems identify objects or people in a photo • How to think about probabilities in a way that's useful to everyday life • How to use the machine learning techniques that form the core of modern AI Intellectual adventurers of all kinds can use the powerful ideas covered in Deep Learning: A Visual Approach to build intelligent systems that help us better understand the world and everyone who lives in it. It's the future of AI, and this book allows you to fully envision it. Full Color Illustrations
Publisher: No Starch Press
ISBN: 1718500734
Category : Computers
Languages : en
Pages : 1315
Book Description
A richly-illustrated, full-color introduction to deep learning that offers visual and conceptual explanations instead of equations. You'll learn how to use key deep learning algorithms without the need for complex math. Ever since computers began beating us at chess, they've been getting better at a wide range of human activities, from writing songs and generating news articles to helping doctors provide healthcare. Deep learning is the source of many of these breakthroughs, and its remarkable ability to find patterns hiding in data has made it the fastest growing field in artificial intelligence (AI). Digital assistants on our phones use deep learning to understand and respond intelligently to voice commands; automotive systems use it to safely navigate road hazards; online platforms use it to deliver personalized suggestions for movies and books - the possibilities are endless. Deep Learning: A Visual Approach is for anyone who wants to understand this fascinating field in depth, but without any of the advanced math and programming usually required to grasp its internals. If you want to know how these tools work, and use them yourself, the answers are all within these pages. And, if you're ready to write your own programs, there are also plenty of supplemental Python notebooks in the accompanying Github repository to get you going. The book's conversational style, extensive color illustrations, illuminating analogies, and real-world examples expertly explain the key concepts in deep learning, including: • How text generators create novel stories and articles • How deep learning systems learn to play and win at human games • How image classification systems identify objects or people in a photo • How to think about probabilities in a way that's useful to everyday life • How to use the machine learning techniques that form the core of modern AI Intellectual adventurers of all kinds can use the powerful ideas covered in Deep Learning: A Visual Approach to build intelligent systems that help us better understand the world and everyone who lives in it. It's the future of AI, and this book allows you to fully envision it. Full Color Illustrations