Hot-Filament Assisted Fabrication of Carbon Nanotube Electron Emitters PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hot-Filament Assisted Fabrication of Carbon Nanotube Electron Emitters PDF full book. Access full book title Hot-Filament Assisted Fabrication of Carbon Nanotube Electron Emitters by . Download full books in PDF and EPUB format.

Hot-Filament Assisted Fabrication of Carbon Nanotube Electron Emitters

Hot-Filament Assisted Fabrication of Carbon Nanotube Electron Emitters PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
A hot-filament CVD reactor was used for the deposition of carbon nanotubes on substrates. Hydrocarbon or oxyhydrocarbon mixtures were used as the carbon source. Hot filaments at temperatures exceeding 200 deg C provided a means of dissociating the vapor or gas feedstock, heating the substrate, and allowing gas species to react in the gas phase as well as on the surface of the substrate leading to the deposition of desired carbon coatings. A high vacuum chamber was used to characterize the electron emission properties of these carbon nanotube coatings using a one-millimeter diameter tungsten rod with a hemispherical tip as the anode while the carbon nanotube coatings served as the cathode. The current-voltage characteristics of the carbon nanotube coatings were measured and used for calculating the electric field at which electron emission turned on as well as calculating the field enhancement factor of the carbon nanotubes. Field emission of electrons from carbon nanotubes starting from an electric field of as low as 1-2 volts per micrometer was achieved.

Hot-Filament Assisted Fabrication of Carbon Nanotube Electron Emitters

Hot-Filament Assisted Fabrication of Carbon Nanotube Electron Emitters PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
A hot-filament CVD reactor was used for the deposition of carbon nanotubes on substrates. Hydrocarbon or oxyhydrocarbon mixtures were used as the carbon source. Hot filaments at temperatures exceeding 200 deg C provided a means of dissociating the vapor or gas feedstock, heating the substrate, and allowing gas species to react in the gas phase as well as on the surface of the substrate leading to the deposition of desired carbon coatings. A high vacuum chamber was used to characterize the electron emission properties of these carbon nanotube coatings using a one-millimeter diameter tungsten rod with a hemispherical tip as the anode while the carbon nanotube coatings served as the cathode. The current-voltage characteristics of the carbon nanotube coatings were measured and used for calculating the electric field at which electron emission turned on as well as calculating the field enhancement factor of the carbon nanotubes. Field emission of electrons from carbon nanotubes starting from an electric field of as low as 1-2 volts per micrometer was achieved.

Electron-Emissive Materials, Vacuum Microelectronics and Flat-Panel Displays: Volume 621

Electron-Emissive Materials, Vacuum Microelectronics and Flat-Panel Displays: Volume 621 PDF Author: Kevin L. Jensen
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 584

Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.

Nanostructured Carbon Electron Emitters and Their Applications

Nanostructured Carbon Electron Emitters and Their Applications PDF Author: Yahachi Saito
Publisher: CRC Press
ISBN: 1000333795
Category : Science
Languages : en
Pages : 374

Book Description
Carbon forms a variety of allotropes due to the diverse hybridization of s- and p-electron orbitals, including the time-honored graphite and diamond as well as new forms such as C60 fullerene, nanotubes, graphene, and carbyne. The new family of carbon isotopes—fullerene, nanotubes, graphene, and carbyne—is called “nanostructured carbon” or “nanocarbon.” These isotopes exhibit extreme properties such as ultrahigh mechanical strength, ultrahigh charge–carrier mobility, and high thermal conductivity, attracting considerable attention for their electronic and mechanical applications as well as for exploring new physics and chemistry in the field of basic materials science. Electron sources are important in a wide range of areas, from basic physics and scientific instruments to medical and industrial applications. Carbon nanotubes (CNTs) and graphene behave as excellent electron-field emitters owing to their exceptional properties and offer several benefits compared to traditional cathodes. Field emission (FE) produces very intense electron currents from a small surface area with a narrow energy spread, providing a highly coherent electron beam—a combination that not only provides us with the brightest electron sources but also explores a new field of electron beam–related research. This book presents the enthusiastic research and development of CNT-based FE devices and focuses on the fundamental aspects of FE from nanocarbon materials, including CNTs and graphene, and the latest research findings related to it. It discusses applications of FE to X-ray and UV generation and reviews electron sources in vacuum electronic devices and space thrusters. Finally, it reports on the new forms of carbon produced via FE from CNT.

Fabrication and Analysis of Carbon Nanotube Based Emitters

Fabrication and Analysis of Carbon Nanotube Based Emitters PDF Author: Vladimir Mancevski
Publisher:
ISBN:
Category :
Languages : en
Pages : 270

Book Description
We have advanced the state-of-the-art for nano-fabrication of carbon nanotube (CNT) based field emission devices, and have conducted experimental and theoretical investigations to better understand the reasons for the high reduced brightness achieved. We have demonstrated that once the CNT emitter failure modes are better understood and resolved, such CNT emitters can easily reach reduced brightness on the order of 109 A m−2 sr−1 V−1 and noise levels of about 1%. These results are about 10% better than the best brightness results from a nanotip emitter archived to date. Our CNT emitters have order of magnitude better reduced brightness than state-of-the-art commercial Schottky emitters. Our analytical models of field emission matched our experimental results well. The CNT emitter was utilized in a modified commercial scanning electron microscope (SEM) and briefly operated to image a sample. We also report a successful emission from a lateral CNT emitter element having a single suspended CNT, where the electron emission is from the CNT sidewall. The lateral CNT emitters have reduced brightness on the order of 108 A m−2 sr−1 V−1, about 10X less than the vertical CNT emitters we fabricated and analyzed. The characteristics of the lateral field emitter were analyzed for manually fabricated and directly grown CNT emitters. There was no significant difference in performance based on the way the CNT emitter was fabricated. We showed that the fabrication technique for making a single CNT emitter element can be scaled to an array of elements, with potential density of 106-107 CNT emitters per cm2. We also report a new localized, site selective technique for editing carbon nanotubes using water vapor and a focused electron beam. We have demonstrated the use of this technique to cut CNTs to length with 10s of nanometers precision and to etch selected areas from CNTs with 10s of nanometers precision. The use of this technique was demonstrated by editing a lateral CNT emitter. We have conducted investigations to demonstrate the effects of higher local water pressure on the CNT etching efficiency. This was achieved by developing a new method of localized gas delivery with a nano-manipulator.

Fabrication, Field Emission Properties and Theoretical Simulation of Triode-type Carbon Nanotube Emitter Arrays

Fabrication, Field Emission Properties and Theoretical Simulation of Triode-type Carbon Nanotube Emitter Arrays PDF Author: Jianfeng Wu
Publisher:
ISBN:
Category : Carbon
Languages : en
Pages : 143

Book Description
Carbon nanotubes exhibit excellent field emission properties and will likely be prime candidates as electron sources in future vacuum electronic applications. Recent research has focused on enhancing field emission from traditional diode-type emitters by adding a gate electrode between the anode and the cathode. Since the gate to cathode (emitter) distance in this triode-type structure is small relative to the anode to cathode distance, this structure allows relatively small gate voltages to significantly enhance or dampen field emission. The key challenge for this research is: synthesizing vertically aligned carbon nanotube field emitters inside arrays of triode-type devices. The most common "top-down", etch-deposit-synthesis method of synthesizing carbon nanotubes inside gated cavities is discussed here, and a novel "bottom-up" method is presented. This new approach bypasses the lithography and wet chemistry essential to the etch-deposit-synthesis method, instead using a dual-beam focused ion beam (FIB) system to mill cavities into a multi-layered substrate. Here the substrate is designed such that the act of milling a hole simultaneously creates the gate structure and exposes the catalyst from which carbon nanotubes can then be grown. Carbon nanotubes are synthesized using plasma enhanced chemical vapor deposition (PECVD) rather than thermal chemical vapor deposition, due to the superior alignment of the PECVD growth. As dual-beam FIB and PECVD can both be largely computerized, this synthesis method is highly reproducible. The dual-beam FIB also permits a high degree of controllability in gate radius, cavity depth and emitter spacing. The effects of a host of PECVD growth parameters (initial catalyst thickness, gas concentration, growth temperature, temperature ramping rate, chamber pressure, and plasma voltage) were characterized so that the morphology of the carbon nanotube emitters could be controlled as well. This "bottom-up" method is employed to construct functional, large area carbon nanotube field emitter arrays (CNT FEAs). The role of the gate layer in field emission is examined experimentally as well as through theoretical models. Field emission testing revealed that increasing gate voltage by as little as 0.3 V had significant impact on the local electric fields, lowering the turn-on and threshold fields by 3.6 and 3.0 V/um, respectively, and increasing the field enhancement factor from 149 to 222. A quantum mechanical model of such triode-type field emission indicates that the local electric field generated by a negatively or positively biased gate directly impacts the tunneling barrier thickness and thus the achievable emission current. However, the geometry of triode-type devices (gate height, gate radius, emitter density) can influence the degree to which the gate voltage influences field emission. I demonstrate here an effective method of analytically calculating the effect of various such geometric parameters on the field emission. Results show that gate type (the height of the gate relative the emitter tip) can significantly impact the local electric field and hence the type of applications a device is suitable for. Side gates (gate height emitter height) induced the highest local electric field, while top gates (gate height emitter height) provided the greatest controllability. For all gate types, increasing the size of the gate opening increased the local electric field by diminishing the gate-emitter screening effect. However, gate voltages were able to enhance or inhibit the local electric field much more readily with smaller gate radii. Due to the strength of gate-emitter field screening in the triode-type structure, the spacing between emitters had virtually no impact on the local electric field, allowing relatively high emitter densities. These theoretical results, combined with a highly controllable synthesis method, provide valuable information and methodology for those designing and optimizing triode-type devices targeted at specific applications.

Carbon Nanotube and Related Field Emitters

Carbon Nanotube and Related Field Emitters PDF Author: Yahachi Saito
Publisher: John Wiley & Sons
ISBN: 3527632107
Category : Science
Languages : en
Pages : 551

Book Description
Carbon nanotubes (CNTs) have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science. These characteristics include extraordinary strength, unique electrical properties, and the fact that they are efficient heat conductors. Field emission is the emission of electrons from the surface of a condensed phase into another phase due to the presence of high electric fields. CNT field emitters are expected to make a breakthrough in the development of field emission display technology and enable miniature X-ray sources that will find a wide variety of applications in electronic devices, industry, and medical and security examinations. This first monograph on the topic covers all aspects in a concise yet comprehensive manner - from the fundamentals to applications. Divided into four sections, the first part discusses the preparation and characterization of carbon nanotubes, while part two is devoted to the field emission properties of carbon nanotubes, including the electron emission mechanism, characteristics of CNT electron sources, and dynamic behavior of CNTs during operation. Part three highlights field emission from other nanomaterials, such as carbon nanowalls, diamond, and silicon and zinc oxide nanowires, before concluding with frontier R&D applications of CNT emitters, from vacuum electronic devices such as field emission displays, to electron sources in electron microscopes, X-ray sources, and microwave amplifiers. Edited by a pioneer in the field, each chapter is written by recognized experts in the respective fields.

Carbon Nanotubes

Carbon Nanotubes PDF Author: Ajay Kumar Mishra
Publisher: Nova Science Publishers
ISBN: 9781620819142
Category : Carbon
Languages : en
Pages : 0

Book Description
Carbon nanotubes possess unusual fascinating properties which have attracted the scientific world. This book covers a very wide domain of research and development where the synthesis and properties of carbon nanotubes are discussed. This book describes the carbon nanotube general introduction, various synthesis procedures and properties. This book is going to be beneficial to the researchers who are working for their postgraduate degree in nanomaterials and nanotechnology. This book also provides a platform for all the academics and researchers as it covers a vast background for the recent literature, abbreviations, and summaries. This book will be worth reading for the researchers who are more interested in the general overview of carbon nanotubes, fundamentals concepts and various synthetic procedures in the multidisciplinary areas. This book contains the fundamental knowledge with the recent advancements for the research and development in the field of nanomaterials and nanotechnology.

Handbook of Nanomaterials for Industrial Applications

Handbook of Nanomaterials for Industrial Applications PDF Author: Chaudhery Mustansar Hussain
Publisher: Elsevier
ISBN: 012813352X
Category : Science
Languages : en
Pages : 1143

Book Description
Handbook of Nanomaterials for Industrial Applications explores the use of novel nanomaterials in the industrial arena. The book covers nanomaterials and the techniques that can play vital roles in many industrial procedures, such as increasing sensitivity, magnifying precision and improving production limits. In addition, the book stresses that these approaches tend to provide green, sustainable solutions for industrial developments. Finally, the legal, economical and toxicity aspects of nanomaterials are covered in detail, making this is a comprehensive, important resource for anyone wanting to learn more about how nanomaterials are changing the way we create products in modern industry. Demonstrates how cutting-edge developments in nanomaterials translate into real-world innovations in a range of industry sectors Explores how using nanomaterials can help engineers to create innovative consumer products Discusses the legal, economical and toxicity issues arising from the industrial applications of nanomaterials

Carbon Nanowalls

Carbon Nanowalls PDF Author: Mineo Hiramatsu
Publisher: Springer Science & Business Media
ISBN: 3211997180
Category : Technology & Engineering
Languages : en
Pages : 168

Book Description
Representing the first text to cover this exciting new area of research, this book will describe synthesis techniques of CNWs, their characterization and various expected applications using CNWs. Carbon-nanowalls (CNWs) can be described as two-dimensional graphite nanostructures with edges comprised of stacks of plane graphene sheets standing almost vertically on the substrate. These sheets form a wall structure with a high aspect ratio. The thickness of CNWs ranges from a few nm to a few tens of nm. The large surface area and sharp edges of CNWs may prove useful for a number of applications such as electrochemical devices, field electron emitters, storage materials for hydrogen gas, catalyst support. In particular, vertically standing CNWs with a high surface-to-volume ratio, serve as an ideal material for catalyst support for fuel cells and in gas storage materials.

Meeting Abstracts

Meeting Abstracts PDF Author: Electrochemical Society
Publisher:
ISBN:
Category : Electrochemistry
Languages : en
Pages : 1590

Book Description