Author: C J Adkins
Publisher: World Scientific
ISBN: 9814552267
Category :
Languages : en
Pages : 374
Book Description
The phenomenon of hopping, in which a particle executes a series of jumps between discrete states, has a fundamental role in a wide range of solid state transport phenomena. In these proceedings acknowledged experts in the field describe important recent progress in developing the phenomenology of hopping processes and applying it to different systems, including crystalline and amorphous semiconductors, glasses, polymers, mesoscopic conductors and high temperature superconductors.
Hopping And Related Phenomena 5 - Proceedings Of The 5th International Conference
Author: C J Adkins
Publisher: World Scientific
ISBN: 9814552267
Category :
Languages : en
Pages : 374
Book Description
The phenomenon of hopping, in which a particle executes a series of jumps between discrete states, has a fundamental role in a wide range of solid state transport phenomena. In these proceedings acknowledged experts in the field describe important recent progress in developing the phenomenology of hopping processes and applying it to different systems, including crystalline and amorphous semiconductors, glasses, polymers, mesoscopic conductors and high temperature superconductors.
Publisher: World Scientific
ISBN: 9814552267
Category :
Languages : en
Pages : 374
Book Description
The phenomenon of hopping, in which a particle executes a series of jumps between discrete states, has a fundamental role in a wide range of solid state transport phenomena. In these proceedings acknowledged experts in the field describe important recent progress in developing the phenomenology of hopping processes and applying it to different systems, including crystalline and amorphous semiconductors, glasses, polymers, mesoscopic conductors and high temperature superconductors.
Hopping And Related Phenomena
Author: Hellmut Fritzsche
Publisher: World Scientific
ISBN: 9814522074
Category :
Languages : en
Pages : 556
Book Description
This review volume contains articles on the recent developments, new ideas, as well as controversial issues dealing with the general phenomena of hopping transport in disordered systems. Examples of hopping systems of current interest are polymers and biological materials, mesoscopic systems, two- and one-dimensional systems such as MOSFETs, semiconductors near the metal-nonmetal transition, and the new high temperature superconducting materials (in their normal state). The fundamental problems addressed include effects of static and dynamic interactions with phonons, Coulomb interaction, new magnetic effects due to coherent scattering, effects of high electric fields, and relaxation phenomena.
Publisher: World Scientific
ISBN: 9814522074
Category :
Languages : en
Pages : 556
Book Description
This review volume contains articles on the recent developments, new ideas, as well as controversial issues dealing with the general phenomena of hopping transport in disordered systems. Examples of hopping systems of current interest are polymers and biological materials, mesoscopic systems, two- and one-dimensional systems such as MOSFETs, semiconductors near the metal-nonmetal transition, and the new high temperature superconducting materials (in their normal state). The fundamental problems addressed include effects of static and dynamic interactions with phonons, Coulomb interaction, new magnetic effects due to coherent scattering, effects of high electric fields, and relaxation phenomena.
Scientific and Technical Aerospace Reports
Organic Electronics
Author: Gregor Meller
Publisher: Springer Science & Business Media
ISBN: 3642045375
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called “plastic chips” ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.
Publisher: Springer Science & Business Media
ISBN: 3642045375
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called “plastic chips” ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.
Stripes and Related Phenomena
Author: Antonio Bianconi
Publisher: Springer Science & Business Media
ISBN: 0306471000
Category : Technology & Engineering
Languages : en
Pages : 557
Book Description
The problem of superconductors has been a central issue in Solid State Physics since 1987. After the discovery of superconductivity (HTSC) in doped perovskites, it was realized that the HTSC appears in an unknown complex electronic phase of c- densed matter. In the early years, all theories of HTSC were focused on the physics of a homogeneous 2D metal with large electron–electron correlations or on a 2D polaron gas. Only after 1990, a novel paradigm started to grow where this 2D metallic phase is described as an inhomogeneous metal. This was the outcome of several experimental evidences of phase separation at low doping. Since 1992, a series of conferences on phase separation were organized to allow scientists to get together to discuss the phase separation and related issues. Following the discovery by the Rome group in 1992 that “the charges move freely mainly in one direction like the water running in the grooves in the corrugated iron foil,” a new scenario to understand superconductivity in the superconductors was open. Because the charges move like rivers, the physics of these materials shifts toward the physics of novel mesoscopic heterostructures and complex electronic solids. Therefore, understanding the striped phases in the perovskites not only provides an opportunity to understand the anomalous metallic state of cuprate superconductors, but also suggests a way to design new materials of technological importance. Indeed, the stripes are becoming a field of general scientific interest.
Publisher: Springer Science & Business Media
ISBN: 0306471000
Category : Technology & Engineering
Languages : en
Pages : 557
Book Description
The problem of superconductors has been a central issue in Solid State Physics since 1987. After the discovery of superconductivity (HTSC) in doped perovskites, it was realized that the HTSC appears in an unknown complex electronic phase of c- densed matter. In the early years, all theories of HTSC were focused on the physics of a homogeneous 2D metal with large electron–electron correlations or on a 2D polaron gas. Only after 1990, a novel paradigm started to grow where this 2D metallic phase is described as an inhomogeneous metal. This was the outcome of several experimental evidences of phase separation at low doping. Since 1992, a series of conferences on phase separation were organized to allow scientists to get together to discuss the phase separation and related issues. Following the discovery by the Rome group in 1992 that “the charges move freely mainly in one direction like the water running in the grooves in the corrugated iron foil,” a new scenario to understand superconductivity in the superconductors was open. Because the charges move like rivers, the physics of these materials shifts toward the physics of novel mesoscopic heterostructures and complex electronic solids. Therefore, understanding the striped phases in the perovskites not only provides an opportunity to understand the anomalous metallic state of cuprate superconductors, but also suggests a way to design new materials of technological importance. Indeed, the stripes are becoming a field of general scientific interest.
Correlated Electron Tunnelling and Quantum Motion of Vortices in Disordered Model Systems
Energy Research Abstracts
Journal of Experimental and Theoretical Physics
Complex Sciences
Author: Jie Zhou
Publisher: Springer Science & Business Media
ISBN: 3642024661
Category : Computers
Languages : en
Pages : 1219
Book Description
I was invited to join the Organizing Committee of the First International Conference on Complex Sciences: Theory and Applications (Complex 2009) as its ninth member. At that moment, eight distinguished colleagues, General Co-chairs Eugene Stanley and Gaoxi Xiao, Technical Co-chairs János Kertész and Bing-Hong Wang, Local Co-chairs Hengshan Wang and Hong-An Che, Publicity Team Shi Xiao and Yubo Wang, had spent hundreds of hours pushing the conference half way to its birth. Ever since then, I have been amazed to see hundreds of papers flooding in, reviewed and commented on by the TPC members. Finally, more than 200 contributions were - lected for the proceedings currently in your hands. They include about 200 papers from the main conference (selected from more than 320 submissions) and about 33 papers from the five collated workshops: Complexity Theory of Art and Music (COART) Causality in Complex Systems (ComplexCCS) Complex Engineering Networks (ComplexEN) Modeling and Analysis of Human Dynamics (MANDYN) Social Physics and its Applications (SPA) Complex sciences are expanding their colonies at such a dazzling speed that it - comes literally impossible for any conference to cover all the frontiers.
Publisher: Springer Science & Business Media
ISBN: 3642024661
Category : Computers
Languages : en
Pages : 1219
Book Description
I was invited to join the Organizing Committee of the First International Conference on Complex Sciences: Theory and Applications (Complex 2009) as its ninth member. At that moment, eight distinguished colleagues, General Co-chairs Eugene Stanley and Gaoxi Xiao, Technical Co-chairs János Kertész and Bing-Hong Wang, Local Co-chairs Hengshan Wang and Hong-An Che, Publicity Team Shi Xiao and Yubo Wang, had spent hundreds of hours pushing the conference half way to its birth. Ever since then, I have been amazed to see hundreds of papers flooding in, reviewed and commented on by the TPC members. Finally, more than 200 contributions were - lected for the proceedings currently in your hands. They include about 200 papers from the main conference (selected from more than 320 submissions) and about 33 papers from the five collated workshops: Complexity Theory of Art and Music (COART) Causality in Complex Systems (ComplexCCS) Complex Engineering Networks (ComplexEN) Modeling and Analysis of Human Dynamics (MANDYN) Social Physics and its Applications (SPA) Complex sciences are expanding their colonies at such a dazzling speed that it - comes literally impossible for any conference to cover all the frontiers.
Quantum and Semi-classical Percolation and Breakdown in Disordered Solids
Author: Asok K. Sen
Publisher: Springer Science & Business Media
ISBN: 3540854274
Category : Science
Languages : en
Pages : 334
Book Description
This lecture notes in physics volume mainly focuses on the semi classical and qu- tum aspects of percolation and breakdown in disordered, composite or granular s- tems. The main reason for this undertaking has been the fact that, of late, there have been a lot of (theoretical) work on quantum percolation, but there is not even a (single) published review on the topic (and, of course, no book). Also, there are many theoretical and experimental studies on the nonlinear current-voltage characteristics both away from, as well as one approaches, an electrical breakdown in composite materials. Some of the results are quite intriguing and may broadly be explained utilising a semi classical (if not, fully quantum mechanical) tunnelling between - cron or nano-sized metallic islands dispersed separated by thin insulating layers, or in other words, between the dangling ends of small percolation clusters. There have also been several (theoretical) studies of Zener breakdown in Mott or Anderson in- lators. Again, there is no review available, connecting them in any coherent fashion. A compendium volume connecting these experimental and theoretical studies should be unique and very timely, and hence this volume. The book is organised as follows. For completeness, we have started with a short and concise introduction on classical percolation. In the ?rst chapter, D. Stauffer reviews the scaling theory of classical percolation emphasizing (biased) diffusion, without any quantum effects. The next chapter by A. K.
Publisher: Springer Science & Business Media
ISBN: 3540854274
Category : Science
Languages : en
Pages : 334
Book Description
This lecture notes in physics volume mainly focuses on the semi classical and qu- tum aspects of percolation and breakdown in disordered, composite or granular s- tems. The main reason for this undertaking has been the fact that, of late, there have been a lot of (theoretical) work on quantum percolation, but there is not even a (single) published review on the topic (and, of course, no book). Also, there are many theoretical and experimental studies on the nonlinear current-voltage characteristics both away from, as well as one approaches, an electrical breakdown in composite materials. Some of the results are quite intriguing and may broadly be explained utilising a semi classical (if not, fully quantum mechanical) tunnelling between - cron or nano-sized metallic islands dispersed separated by thin insulating layers, or in other words, between the dangling ends of small percolation clusters. There have also been several (theoretical) studies of Zener breakdown in Mott or Anderson in- lators. Again, there is no review available, connecting them in any coherent fashion. A compendium volume connecting these experimental and theoretical studies should be unique and very timely, and hence this volume. The book is organised as follows. For completeness, we have started with a short and concise introduction on classical percolation. In the ?rst chapter, D. Stauffer reviews the scaling theory of classical percolation emphasizing (biased) diffusion, without any quantum effects. The next chapter by A. K.