Author: Pierre Cartier
Publisher: Springer Nature
ISBN: 3030778452
Category : Mathematics
Languages : en
Pages : 277
Book Description
This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s. The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.
Classical Hopf Algebras and Their Applications
Author: Pierre Cartier
Publisher: Springer Nature
ISBN: 3030778452
Category : Mathematics
Languages : en
Pages : 277
Book Description
This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s. The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.
Publisher: Springer Nature
ISBN: 3030778452
Category : Mathematics
Languages : en
Pages : 277
Book Description
This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s. The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.
Hopf Algebras and Root Systems
Author: István Heckenberger
Publisher: American Mathematical Soc.
ISBN: 1470452324
Category : Education
Languages : en
Pages : 582
Book Description
This book is an introduction to Hopf algebras in braided monoidal categories with applications to Hopf algebras in the usual sense. The main goal of the book is to present from scratch and with complete proofs the theory of Nichols algebras (or quantum symmetric algebras) and the surprising relationship between Nichols algebras and generalized root systems. In general, Nichols algebras are not classified by Cartan graphs and their root systems. However, extending partial results in the literature, the authors were able to associate a Cartan graph to a large class of Nichols algebras. This allows them to determine the structure of right coideal subalgebras of Nichols systems which generalize Nichols algebras. As applications of these results, the book contains a classification of right coideal subalgebras of quantum groups and of the small quantum groups, and a proof of the existence of PBW-bases that does not involve case by case considerations. The authors also include short chapter summaries at the beginning of each chapter and historical notes at the end of each chapter. The theory of Cartan graphs, Weyl groupoids, and generalized root systems appears here for the first time in a book form. Hence, the book serves as an introduction to the modern classification theory of pointed Hopf algebras for advanced graduate students and researchers working in categorial aspects and classification theory of Hopf algebras and their generalization.
Publisher: American Mathematical Soc.
ISBN: 1470452324
Category : Education
Languages : en
Pages : 582
Book Description
This book is an introduction to Hopf algebras in braided monoidal categories with applications to Hopf algebras in the usual sense. The main goal of the book is to present from scratch and with complete proofs the theory of Nichols algebras (or quantum symmetric algebras) and the surprising relationship between Nichols algebras and generalized root systems. In general, Nichols algebras are not classified by Cartan graphs and their root systems. However, extending partial results in the literature, the authors were able to associate a Cartan graph to a large class of Nichols algebras. This allows them to determine the structure of right coideal subalgebras of Nichols systems which generalize Nichols algebras. As applications of these results, the book contains a classification of right coideal subalgebras of quantum groups and of the small quantum groups, and a proof of the existence of PBW-bases that does not involve case by case considerations. The authors also include short chapter summaries at the beginning of each chapter and historical notes at the end of each chapter. The theory of Cartan graphs, Weyl groupoids, and generalized root systems appears here for the first time in a book form. Hence, the book serves as an introduction to the modern classification theory of pointed Hopf algebras for advanced graduate students and researchers working in categorial aspects and classification theory of Hopf algebras and their generalization.
Hopf Algebras and Their Actions on Rings
Author: Susan Montgomery
Publisher: American Mathematical Soc.
ISBN: 0821807382
Category : Mathematics
Languages : en
Pages : 258
Book Description
The last ten years have seen a number of significant advances in Hopf algebras. The best known is the introduction of quantum groups, which are Hopf algebras that arose in mathematical physics and now have connections to many areas of mathematics. In addition, several conjectures of Kaplansky have been solved, the most striking of which is a kind of Lagrange's theorem for Hopf algebras. Work on actions of Hopf algebras has unified earlier results on group actions, actions of Lie algebras, and graded algebras. This book brings together many of these recent developments from the viewpoint of the algebraic structure of Hopf algebras and their actions and coactions. Quantum groups are treated as an important example, rather than as an end in themselves. The two introductory chapters review definitions and basic facts; otherwise, most of the material has not previously appeared in book form. Providing an accessible introduction to Hopf algebras, this book would make an excellent graduate textbook for a course in Hopf algebras or an introduction to quantum groups.
Publisher: American Mathematical Soc.
ISBN: 0821807382
Category : Mathematics
Languages : en
Pages : 258
Book Description
The last ten years have seen a number of significant advances in Hopf algebras. The best known is the introduction of quantum groups, which are Hopf algebras that arose in mathematical physics and now have connections to many areas of mathematics. In addition, several conjectures of Kaplansky have been solved, the most striking of which is a kind of Lagrange's theorem for Hopf algebras. Work on actions of Hopf algebras has unified earlier results on group actions, actions of Lie algebras, and graded algebras. This book brings together many of these recent developments from the viewpoint of the algebraic structure of Hopf algebras and their actions and coactions. Quantum groups are treated as an important example, rather than as an end in themselves. The two introductory chapters review definitions and basic facts; otherwise, most of the material has not previously appeared in book form. Providing an accessible introduction to Hopf algebras, this book would make an excellent graduate textbook for a course in Hopf algebras or an introduction to quantum groups.
An Introduction to Hopf Algebras
Author: Robert G. Underwood
Publisher: Springer Science & Business Media
ISBN: 0387727655
Category : Mathematics
Languages : en
Pages : 283
Book Description
Only book on Hopf algebras aimed at advanced undergraduates
Publisher: Springer Science & Business Media
ISBN: 0387727655
Category : Mathematics
Languages : en
Pages : 283
Book Description
Only book on Hopf algebras aimed at advanced undergraduates
Hopf Algebras and Galois Theory
Author: Stephen U. Chase
Publisher: Springer
ISBN: 3540361340
Category : Mathematics
Languages : en
Pages : 139
Book Description
Publisher: Springer
ISBN: 3540361340
Category : Mathematics
Languages : en
Pages : 139
Book Description
Hopf Algebra
Author: Sorin Dascalescu
Publisher: CRC Press
ISBN: 1482270749
Category : Mathematics
Languages : en
Pages : 420
Book Description
This study covers comodules, rational modules and bicomodules; cosemisimple, semiperfect and co-Frobenius algebras; bialgebras and Hopf algebras; actions and coactions of Hopf algebras on algebras; finite dimensional Hopf algebras, with the Nicholas-Zoeller and Taft-Wilson theorems and character theory; and more.
Publisher: CRC Press
ISBN: 1482270749
Category : Mathematics
Languages : en
Pages : 420
Book Description
This study covers comodules, rational modules and bicomodules; cosemisimple, semiperfect and co-Frobenius algebras; bialgebras and Hopf algebras; actions and coactions of Hopf algebras on algebras; finite dimensional Hopf algebras, with the Nicholas-Zoeller and Taft-Wilson theorems and character theory; and more.
Quasi-Hopf Algebras
Author: Daniel Bulacu
Publisher: Cambridge University Press
ISBN: 1108427014
Category : Mathematics
Languages : en
Pages : 545
Book Description
This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art.
Publisher: Cambridge University Press
ISBN: 1108427014
Category : Mathematics
Languages : en
Pages : 545
Book Description
This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art.
Hopf Algebras
Author: David E. Radford
Publisher: World Scientific
ISBN: 9814335991
Category : Mathematics
Languages : en
Pages : 584
Book Description
The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph.
Publisher: World Scientific
ISBN: 9814335991
Category : Mathematics
Languages : en
Pages : 584
Book Description
The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph.
Representations of Finite Classical Groups
Author: A. V. Zelevinsky
Publisher: Springer
ISBN: 3540387110
Category : Mathematics
Languages : en
Pages : 189
Book Description
Publisher: Springer
ISBN: 3540387110
Category : Mathematics
Languages : en
Pages : 189
Book Description
Hopf Algebras
Author: Eiichi Abe
Publisher: Cambridge University Press
ISBN: 9780521604895
Category : Mathematics
Languages : en
Pages : 304
Book Description
An introduction to the basic theory of Hopf algebras for those familiar with basic linear and commutative algebra.
Publisher: Cambridge University Press
ISBN: 9780521604895
Category : Mathematics
Languages : en
Pages : 304
Book Description
An introduction to the basic theory of Hopf algebras for those familiar with basic linear and commutative algebra.