Author: Apostolos Beligiannis
Publisher: American Mathematical Soc.
ISBN: 0821839969
Category : Mathematics
Languages : en
Pages : 224
Book Description
In this paper the authors investigate homological and homotopical aspects of a concept of torsion which is general enough to cover torsion and cotorsion pairs in abelian categories, $t$-structures and recollements in triangulated categories, and torsion pairs in stable categories. The proper conceptual framework for this study is the general setting of pretriangulated categories, an omnipresent class of additive categories which includes abelian, triangulated, stable, and moregenerally (homotopy categories of) closed model categories in the sense of Quillen, as special cases. The main focus of their study is on the investigation of the strong connections and the interplay between (co)torsion pairs and tilting theory in abelian, triangulated and stable categories on one hand,and universal cohomology theories induced by torsion pairs on the other hand. These new universal cohomology theories provide a natural generalization of the Tate-Vogel (co)homology theory. The authors also study the connections between torsion theories and closed model structures, which allow them to classify all cotorsion pairs in an abelian category and all torsion pairs in a stable category, in homotopical terms. For instance they obtain a classification of (co)tilting modules along theselines. Finally they give torsion theoretic applications to the structure of Gorenstein and Cohen-Macaulay categories, which provide a natural generalization of Gorenstein and Cohen-Macaulay rings.
Homological and Homotopical Aspects of Torsion Theories
Rank One Higgs Bundles and Representations of Fundamental Groups of Riemann Surfaces
Author: William Mark Goldman
Publisher: American Mathematical Soc.
ISBN: 082184136X
Category : Mathematics
Languages : en
Pages : 86
Book Description
This expository article details the theory of rank one Higgs bundles over a closed Riemann surface $X$ and their relation to representations of the fundamental group of $X$. The authors construct an equivalence between the deformation theories of flat connections and Higgs pairs. This provides an identification of moduli spaces arising in different contexts. The moduli spaces are real Lie groups. From each context arises a complex structure, and the different complex structures define a hyperkähler structure. The twistor space, real forms, and various group actions are computed explicitly in terms of the Jacobian of $X$. The authors describe the moduli spaces and their geometry in terms of the Riemann period matrix of $X$.
Publisher: American Mathematical Soc.
ISBN: 082184136X
Category : Mathematics
Languages : en
Pages : 86
Book Description
This expository article details the theory of rank one Higgs bundles over a closed Riemann surface $X$ and their relation to representations of the fundamental group of $X$. The authors construct an equivalence between the deformation theories of flat connections and Higgs pairs. This provides an identification of moduli spaces arising in different contexts. The moduli spaces are real Lie groups. From each context arises a complex structure, and the different complex structures define a hyperkähler structure. The twistor space, real forms, and various group actions are computed explicitly in terms of the Jacobian of $X$. The authors describe the moduli spaces and their geometry in terms of the Riemann period matrix of $X$.
Brownian Brownian Motion-I
Author: Nikolai Chernov
Publisher: American Mathematical Soc.
ISBN: 082184282X
Category : Science
Languages : en
Pages : 208
Book Description
A classical model of Brownian motion consists of a heavy molecule submerged into a gas of light atoms in a closed container. In this work the authors study a 2D version of this model, where the molecule is a heavy disk of mass $M \gg 1$ and the gas is represented by just one point particle of mass $m=1$, which interacts with the disk and the walls of the container via elastic collisions. Chaotic behavior of the particles is ensured by convex (scattering) walls of the container. The authors prove that the position and velocity of the disk, in an appropriate time scale, converge, as $M\to\infty$, to a Brownian motion (possibly, inhomogeneous); the scaling regime and the structure of the limit process depend on the initial conditions. The proofs are based on strong hyperbolicity of the underlying dynamics, fast decay of correlations in systems with elastic collisions (billiards), and methods of averaging theory.
Publisher: American Mathematical Soc.
ISBN: 082184282X
Category : Science
Languages : en
Pages : 208
Book Description
A classical model of Brownian motion consists of a heavy molecule submerged into a gas of light atoms in a closed container. In this work the authors study a 2D version of this model, where the molecule is a heavy disk of mass $M \gg 1$ and the gas is represented by just one point particle of mass $m=1$, which interacts with the disk and the walls of the container via elastic collisions. Chaotic behavior of the particles is ensured by convex (scattering) walls of the container. The authors prove that the position and velocity of the disk, in an appropriate time scale, converge, as $M\to\infty$, to a Brownian motion (possibly, inhomogeneous); the scaling regime and the structure of the limit process depend on the initial conditions. The proofs are based on strong hyperbolicity of the underlying dynamics, fast decay of correlations in systems with elastic collisions (billiards), and methods of averaging theory.
Scattering Resonances for Several Small Convex Bodies and the Lax-Phillips Conjecture
Author: Luchezar N. Stoyanov
Publisher: American Mathematical Soc.
ISBN: 0821842943
Category : Mathematics
Languages : en
Pages : 90
Book Description
This work deals with scattering by obstacles which are finite disjoint unions of strictly convex bodies with smooth boundaries in an odd dimensional Euclidean space. The class of obstacles of this type which is considered are contained in a given (large) ball and have some additional properties.
Publisher: American Mathematical Soc.
ISBN: 0821842943
Category : Mathematics
Languages : en
Pages : 90
Book Description
This work deals with scattering by obstacles which are finite disjoint unions of strictly convex bodies with smooth boundaries in an odd dimensional Euclidean space. The class of obstacles of this type which is considered are contained in a given (large) ball and have some additional properties.
Moderate Deviations for the Range of Planar Random Walks
Author: Richard F. Bass
Publisher: American Mathematical Soc.
ISBN: 0821842870
Category : Mathematics
Languages : en
Pages : 98
Book Description
Given a symmetric random walk in ${\mathbb Z}^2$ with finite second moments, let $R_n$ be the range of the random walk up to time $n$. The authors study moderate deviations for $R_n -{\mathbb E}R_n$ and ${\mathbb E}R_n -R_n$. They also derive the corresponding laws of the iterated logarithm.
Publisher: American Mathematical Soc.
ISBN: 0821842870
Category : Mathematics
Languages : en
Pages : 98
Book Description
Given a symmetric random walk in ${\mathbb Z}^2$ with finite second moments, let $R_n$ be the range of the random walk up to time $n$. The authors study moderate deviations for $R_n -{\mathbb E}R_n$ and ${\mathbb E}R_n -R_n$. They also derive the corresponding laws of the iterated logarithm.
The Dynamics of Modulated Wave Trains
Author: A. Doelman
Publisher: American Mathematical Soc.
ISBN: 0821842935
Category : Mathematics
Languages : en
Pages : 122
Book Description
The authors investigate the dynamics of weakly-modulated nonlinear wave trains. For reaction-diffusion systems and for the complex Ginzburg-Landau equation, they establish rigorously that slowly varying modulations of wave trains are well approximated by solutions to the Burgers equation over the natural time scale. In addition to the validity of the Burgers equation, they show that the viscous shock profiles in the Burgers equation for the wave number can be found as genuine modulated waves in the underlying reaction-diffusion system. In other words, they establish the existence and stability of waves that are time-periodic in appropriately moving coordinate frames which separate regions in physical space that are occupied by wave trains of different, but almost identical, wave number. The speed of these shocks is determined by the Rankine-Hugoniot condition where the flux is given by the nonlinear dispersion relation of the wave trains. The group velocities of the wave trains in a frame moving with the interface are directed toward the interface. Using pulse-interaction theory, the authors also consider similar shock profiles for wave trains with large wave number, that is, for an infinite sequence of widely separated pulses. The results presented here are applied to the FitzHugh-Nagumo equation and to hydrodynamic stability problems.
Publisher: American Mathematical Soc.
ISBN: 0821842935
Category : Mathematics
Languages : en
Pages : 122
Book Description
The authors investigate the dynamics of weakly-modulated nonlinear wave trains. For reaction-diffusion systems and for the complex Ginzburg-Landau equation, they establish rigorously that slowly varying modulations of wave trains are well approximated by solutions to the Burgers equation over the natural time scale. In addition to the validity of the Burgers equation, they show that the viscous shock profiles in the Burgers equation for the wave number can be found as genuine modulated waves in the underlying reaction-diffusion system. In other words, they establish the existence and stability of waves that are time-periodic in appropriately moving coordinate frames which separate regions in physical space that are occupied by wave trains of different, but almost identical, wave number. The speed of these shocks is determined by the Rankine-Hugoniot condition where the flux is given by the nonlinear dispersion relation of the wave trains. The group velocities of the wave trains in a frame moving with the interface are directed toward the interface. Using pulse-interaction theory, the authors also consider similar shock profiles for wave trains with large wave number, that is, for an infinite sequence of widely separated pulses. The results presented here are applied to the FitzHugh-Nagumo equation and to hydrodynamic stability problems.
Volume Doubling Measures and Heat Kernel Estimates on Self-Similar Sets
Author: Jun Kigami
Publisher: American Mathematical Soc.
ISBN: 0821842927
Category : Mathematics
Languages : en
Pages : 110
Book Description
This paper studies the following three problems. 1. When does a measure on a self-similar set have the volume doubling property with respect to a given distance? 2. Is there any distance on a self-similar set under which the contraction mappings have the prescribed values of contractions ratios? 3. When does a heat kernel on a self-similar set associated with a self-similar Dirichlet form satisfy the Li-Yau type sub-Gaussian diagonal estimate? These three problems turn out to be closely related. The author introduces a new class of self-similar set, called rationally ramified self-similar sets containing both the Sierpinski gasket and the (higher dimensional) Sierpinski carpet and gives complete solutions of the above three problems for this class. In particular, the volume doubling property is shown to be equivalent to the upper Li-Yau type sub-Gaussian diagonal estimate of a heat kernel.
Publisher: American Mathematical Soc.
ISBN: 0821842927
Category : Mathematics
Languages : en
Pages : 110
Book Description
This paper studies the following three problems. 1. When does a measure on a self-similar set have the volume doubling property with respect to a given distance? 2. Is there any distance on a self-similar set under which the contraction mappings have the prescribed values of contractions ratios? 3. When does a heat kernel on a self-similar set associated with a self-similar Dirichlet form satisfy the Li-Yau type sub-Gaussian diagonal estimate? These three problems turn out to be closely related. The author introduces a new class of self-similar set, called rationally ramified self-similar sets containing both the Sierpinski gasket and the (higher dimensional) Sierpinski carpet and gives complete solutions of the above three problems for this class. In particular, the volume doubling property is shown to be equivalent to the upper Li-Yau type sub-Gaussian diagonal estimate of a heat kernel.
Toroidal Dehn Fillings on Hyperbolic 3-Manifolds
Author: Cameron Gordon
Publisher: American Mathematical Soc.
ISBN: 082184167X
Category : Mathematics
Languages : en
Pages : 154
Book Description
The authors determine all hyperbolic $3$-manifolds $M$ admitting two toroidal Dehn fillings at distance $4$ or $5$. They show that if $M$ is a hyperbolic $3$-manifold with a torus boundary component $T 0$, and $r,s$ are two slopes on $T 0$ with $\Delta(r,s) = 4$ or $5$ such that $M(r)$ and $M(s)$ both contain an essential torus, then $M$ is either one of $14$ specific manifolds $M i$, or obtained from $M 1, M 2, M 3$ or $M {14}$ by attaching a solid torus to $\partial M i - T 0$.All the manifolds $M i$ are hyperbolic, and the authors show that only the first three can be embedded into $S3$. As a consequence, this leads to a complete classification of all hyperbolic knots in $S3$ admitting two toroidal surgeries with distance at least $4$.
Publisher: American Mathematical Soc.
ISBN: 082184167X
Category : Mathematics
Languages : en
Pages : 154
Book Description
The authors determine all hyperbolic $3$-manifolds $M$ admitting two toroidal Dehn fillings at distance $4$ or $5$. They show that if $M$ is a hyperbolic $3$-manifold with a torus boundary component $T 0$, and $r,s$ are two slopes on $T 0$ with $\Delta(r,s) = 4$ or $5$ such that $M(r)$ and $M(s)$ both contain an essential torus, then $M$ is either one of $14$ specific manifolds $M i$, or obtained from $M 1, M 2, M 3$ or $M {14}$ by attaching a solid torus to $\partial M i - T 0$.All the manifolds $M i$ are hyperbolic, and the authors show that only the first three can be embedded into $S3$. As a consequence, this leads to a complete classification of all hyperbolic knots in $S3$ admitting two toroidal surgeries with distance at least $4$.
Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert Spaces
Author: Volkmar Liebscher
Publisher: American Mathematical Soc.
ISBN: 0821843184
Category : Mathematics
Languages : en
Pages : 124
Book Description
In a series of papers Tsirelson constructed from measure types of random sets or (generalised) random processes a new range of examples for continuous tensor product systems of Hilbert spaces introduced by Arveson for classifying $E_0$-semigroups upto cocycle conjugacy. This paper starts from establishing the converse. So the author connects each continuous tensor product system of Hilbert spaces with measure types of distributions of random (closed) sets in $[0,1]$ or $\mathbb R_+$. These measure types are stationary and factorise over disjoint intervals. In a special case of this construction, the corresponding measure type is an invariant of the product system. This shows, completing in a more systematic way the Tsirelson examples, that the classification scheme for product systems into types $\mathrm{I}_n$, $\mathrm{II}_n$ and $\mathrm{III}$ is not complete. Moreover, based on a detailed study of this kind of measure types, the author constructs for each stationary factorising measure type a continuous tensor product system of Hilbert spaces such that this measure type arises as the before mentioned invariant.
Publisher: American Mathematical Soc.
ISBN: 0821843184
Category : Mathematics
Languages : en
Pages : 124
Book Description
In a series of papers Tsirelson constructed from measure types of random sets or (generalised) random processes a new range of examples for continuous tensor product systems of Hilbert spaces introduced by Arveson for classifying $E_0$-semigroups upto cocycle conjugacy. This paper starts from establishing the converse. So the author connects each continuous tensor product system of Hilbert spaces with measure types of distributions of random (closed) sets in $[0,1]$ or $\mathbb R_+$. These measure types are stationary and factorise over disjoint intervals. In a special case of this construction, the corresponding measure type is an invariant of the product system. This shows, completing in a more systematic way the Tsirelson examples, that the classification scheme for product systems into types $\mathrm{I}_n$, $\mathrm{II}_n$ and $\mathrm{III}$ is not complete. Moreover, based on a detailed study of this kind of measure types, the author constructs for each stationary factorising measure type a continuous tensor product system of Hilbert spaces such that this measure type arises as the before mentioned invariant.
The Scaling Limit of the Correlation of Holes on the Triangular Lattice with Periodic Boundary Conditions
Author: Mihai Ciucu
Publisher: American Mathematical Soc.
ISBN: 0821843265
Category : Science
Languages : en
Pages : 118
Book Description
The author defines the correlation of holes on the triangular lattice under periodic boundary conditions and studies its asymptotics as the distances between the holes grow to infinity. He proves that the joint correlation of an arbitrary collection of triangular holes of even side-lengths (in lattice spacing units) satisfies, for large separations between the holes, a Coulomb law and a superposition principle that perfectly parallel the laws of two dimensional electrostatics, with physical charges corresponding to holes, and their magnitude to the difference between the number of right-pointing and left-pointing unit triangles in each hole. The author details this parallel by indicating that, as a consequence of the results, the relative probabilities of finding a fixed collection of holes at given mutual distances (when sampling uniformly at random over all unit rhombus tilings of the complement of the holes) approach, for large separations between the holes, the relative probabilities of finding the corresponding two dimensional physical system of charges at given mutual distances. Physical temperature corresponds to a parameter refining the background triangular lattice. He also gives an equivalent phrasing of the results in terms of covering surfaces of given holonomy. From this perspective, two dimensional electrostatic potential energy arises by averaging over all possible discrete geometries of the covering surfaces.
Publisher: American Mathematical Soc.
ISBN: 0821843265
Category : Science
Languages : en
Pages : 118
Book Description
The author defines the correlation of holes on the triangular lattice under periodic boundary conditions and studies its asymptotics as the distances between the holes grow to infinity. He proves that the joint correlation of an arbitrary collection of triangular holes of even side-lengths (in lattice spacing units) satisfies, for large separations between the holes, a Coulomb law and a superposition principle that perfectly parallel the laws of two dimensional electrostatics, with physical charges corresponding to holes, and their magnitude to the difference between the number of right-pointing and left-pointing unit triangles in each hole. The author details this parallel by indicating that, as a consequence of the results, the relative probabilities of finding a fixed collection of holes at given mutual distances (when sampling uniformly at random over all unit rhombus tilings of the complement of the holes) approach, for large separations between the holes, the relative probabilities of finding the corresponding two dimensional physical system of charges at given mutual distances. Physical temperature corresponds to a parameter refining the background triangular lattice. He also gives an equivalent phrasing of the results in terms of covering surfaces of given holonomy. From this perspective, two dimensional electrostatic potential energy arises by averaging over all possible discrete geometries of the covering surfaces.