Hochschild Cohomology for Algebras PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hochschild Cohomology for Algebras PDF full book. Access full book title Hochschild Cohomology for Algebras by Sarah J. Witherspoon. Download full books in PDF and EPUB format.

Hochschild Cohomology for Algebras

Hochschild Cohomology for Algebras PDF Author: Sarah J. Witherspoon
Publisher: American Mathematical Soc.
ISBN: 1470449315
Category : Education
Languages : en
Pages : 265

Book Description
This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.

Hochschild Cohomology for Algebras

Hochschild Cohomology for Algebras PDF Author: Sarah J. Witherspoon
Publisher: American Mathematical Soc.
ISBN: 1470449315
Category : Education
Languages : en
Pages : 265

Book Description
This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.

Hochschild Cohomology for Algebras

Hochschild Cohomology for Algebras PDF Author: Sarah J. Witherspoon
Publisher: American Mathematical Society
ISBN: 1470462869
Category : Mathematics
Languages : en
Pages : 265

Book Description
This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.

Hochschild Cohomology of Von Neumann Algebras

Hochschild Cohomology of Von Neumann Algebras PDF Author: Allan M. Sinclair
Publisher: Cambridge University Press
ISBN: 0521478804
Category : Mathematics
Languages : en
Pages : 208

Book Description
This is an introductory text intended to give the non-specialist a comprehensive insight into the science of biotransformations. The book traces the history of biotransformations, clearly spells out the pros and cons of conducting enzyme-mediated versus whole-cell bioconversions, and gives a variety of examples wherein the bio-reaction is a key element in a reaction sequence leading from cheap starting materials to valuable end products.

Differential Equations on Manifolds and Mathematical Physics

Differential Equations on Manifolds and Mathematical Physics PDF Author: Vladimir M. Manuilov
Publisher: Birkhäuser
ISBN: 9783030373252
Category : Mathematics
Languages : en
Pages : 338

Book Description
This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.

An Introduction to Homological Algebra

An Introduction to Homological Algebra PDF Author: Charles A. Weibel
Publisher: Cambridge University Press
ISBN: 113964307X
Category : Mathematics
Languages : en
Pages : 470

Book Description
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Homological Algebra (PMS-19), Volume 19

Homological Algebra (PMS-19), Volume 19 PDF Author: Henry Cartan
Publisher: Princeton University Press
ISBN: 1400883849
Category : Mathematics
Languages : en
Pages : 408

Book Description
When this book was written, methods of algebraic topology had caused revolutions in the world of pure algebra. To clarify the advances that had been made, Cartan and Eilenberg tried to unify the fields and to construct the framework of a fully fledged theory. The invasion of algebra had occurred on three fronts through the construction of cohomology theories for groups, Lie algebras, and associative algebras. This book presents a single homology (and also cohomology) theory that embodies all three; a large number of results is thus established in a general framework. Subsequently, each of the three theories is singled out by a suitable specialization, and its specific properties are studied. The starting point is the notion of a module over a ring. The primary operations are the tensor product of two modules and the groups of all homomorphisms of one module into another. From these, "higher order" derived of operations are obtained, which enjoy all the properties usually attributed to homology theories. This leads in a natural way to the study of "functors" and of their "derived functors." This mathematical masterpiece will appeal to all mathematicians working in algebraic topology.

Cyclic Homology

Cyclic Homology PDF Author: Jean-Louis Loday
Publisher: Springer Science & Business Media
ISBN: 3662217392
Category : Mathematics
Languages : en
Pages : 467

Book Description
This book is a comprehensive study of cyclic homology theory together with its relationship with Hochschild homology, de Rham cohomology, S1 equivariant homology, the Chern character, Lie algebra homology, algebraic K-theory and non-commutative differential geometry. Though conceived as a basic reference on the subject, many parts of this book are accessible to graduate students.

Deformation Theory of Algebras and Structures and Applications

Deformation Theory of Algebras and Structures and Applications PDF Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9400930577
Category : Mathematics
Languages : en
Pages : 1024

Book Description
This volume is a result of a meeting which took place in June 1986 at 'll Ciocco" in Italy entitled 'Deformation theory of algebras and structures and applications'. It appears somewhat later than is perhaps desirable for a volume resulting from a summer school. In return it contains a good many results which were not yet available at the time of the meeting. In particular it is now abundantly clear that the Deformation theory of algebras is indeed central to the whole philosophy of deformations/perturbations/stability. This is one of the main results of the 254 page paper below (practically a book in itself) by Gerstenhaber and Shack entitled "Algebraic cohomology and defor mation theory". Two of the main philosphical-methodological pillars on which deformation theory rests are the fol lowing • (Pure) To study a highly complicated object, it is fruitful to study the ways in which it can arise as a limit of a family of simpler objects: "the unraveling of complicated structures" . • (Applied) If a mathematical model is to be applied to the real world there will usually be such things as coefficients which are imperfectly known. Thus it is important to know how the behaviour of a model changes as it is perturbed (deformed).

Octonions, Jordan Algebras and Exceptional Groups

Octonions, Jordan Algebras and Exceptional Groups PDF Author: Tonny A. Springer
Publisher: Springer
ISBN: 3662126222
Category : Mathematics
Languages : en
Pages : 212

Book Description
The 1963 Göttingen notes of T. A. Springer are well known in the field but have been unavailable for some time. This book is a translation of those notes, completely updated and revised. The part of the book dealing with the algebraic structures is on a fairly elementary level, presupposing basic results from algebra.

Tensor Categories

Tensor Categories PDF Author: Pavel Etingof
Publisher: American Mathematical Soc.
ISBN: 1470434415
Category : Mathematics
Languages : en
Pages : 362

Book Description
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.