Author: J.S. Rao
Publisher: Springer Science & Business Media
ISBN: 9400711654
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
This book starts with the invention of the wheel nearly 5000 years ago, and via Archimedes, Aristotle and Hero describes the first practical applications such as water wheels and grinding wheels, pushing on to more rigorous scientific research by inquiring minds such as Leonardo da Vinci and Copernicus in later ages. Newton and Leibniz followed, and beam structures received maximum attention three centuries ago. As focus shifts and related disciplines such as mathematics and physics also develop, slowly turbomachines and rotor and blade dynamics as we know the subject now take shape. While the book traces the events leading to Laval and Parsons Turbines, the emphasis is on rotor and blade dynamics aspects that pushed these turbines to their limits in the last century. The tabular and graphical methods developed in the pre-computer era have taken different form in the last fifty years through finite element methods. The methods evolved in the last century are discussed in detail to help modern day designers and researchers. This book will be useful to young researchers and engineers in industry and educational institutions engaged in rotor and blade dynamics work in understanding the past and the present developments and what is expected in future. Faculty and industry engineers can benefit from this broad perspective history in formulating their developmental plans.
History of Rotating Machinery Dynamics
Author: J.S. Rao
Publisher: Springer Science & Business Media
ISBN: 9400711654
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
This book starts with the invention of the wheel nearly 5000 years ago, and via Archimedes, Aristotle and Hero describes the first practical applications such as water wheels and grinding wheels, pushing on to more rigorous scientific research by inquiring minds such as Leonardo da Vinci and Copernicus in later ages. Newton and Leibniz followed, and beam structures received maximum attention three centuries ago. As focus shifts and related disciplines such as mathematics and physics also develop, slowly turbomachines and rotor and blade dynamics as we know the subject now take shape. While the book traces the events leading to Laval and Parsons Turbines, the emphasis is on rotor and blade dynamics aspects that pushed these turbines to their limits in the last century. The tabular and graphical methods developed in the pre-computer era have taken different form in the last fifty years through finite element methods. The methods evolved in the last century are discussed in detail to help modern day designers and researchers. This book will be useful to young researchers and engineers in industry and educational institutions engaged in rotor and blade dynamics work in understanding the past and the present developments and what is expected in future. Faculty and industry engineers can benefit from this broad perspective history in formulating their developmental plans.
Publisher: Springer Science & Business Media
ISBN: 9400711654
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
This book starts with the invention of the wheel nearly 5000 years ago, and via Archimedes, Aristotle and Hero describes the first practical applications such as water wheels and grinding wheels, pushing on to more rigorous scientific research by inquiring minds such as Leonardo da Vinci and Copernicus in later ages. Newton and Leibniz followed, and beam structures received maximum attention three centuries ago. As focus shifts and related disciplines such as mathematics and physics also develop, slowly turbomachines and rotor and blade dynamics as we know the subject now take shape. While the book traces the events leading to Laval and Parsons Turbines, the emphasis is on rotor and blade dynamics aspects that pushed these turbines to their limits in the last century. The tabular and graphical methods developed in the pre-computer era have taken different form in the last fifty years through finite element methods. The methods evolved in the last century are discussed in detail to help modern day designers and researchers. This book will be useful to young researchers and engineers in industry and educational institutions engaged in rotor and blade dynamics work in understanding the past and the present developments and what is expected in future. Faculty and industry engineers can benefit from this broad perspective history in formulating their developmental plans.
Dynamics of Rotating Systems
Author: Giancarlo Genta
Publisher: Springer Science & Business Media
ISBN: 038728687X
Category : Technology & Engineering
Languages : en
Pages : 674
Book Description
Provides an up-to-date review of rotor dynamics, dealing with basic topics as well as a number of specialized topics usually available only in journal articles Unlike other books on rotordynamics, this treats the entire machine as a system, with the rotor as just one component
Publisher: Springer Science & Business Media
ISBN: 038728687X
Category : Technology & Engineering
Languages : en
Pages : 674
Book Description
Provides an up-to-date review of rotor dynamics, dealing with basic topics as well as a number of specialized topics usually available only in journal articles Unlike other books on rotordynamics, this treats the entire machine as a system, with the rotor as just one component
Machinery Vibration and Rotordynamics
Author: John M. Vance
Publisher: John Wiley & Sons
ISBN: 0470916079
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
An in-depth analysis of machine vibration in rotating machinery Whether it's a compressor on an offshore platform, a turbocharger in a truck or automobile, or a turbine in a jet airplane, rotating machinery is the driving force behind almost anything that produces or uses energy. Counted on daily to perform any number of vital societal tasks, turbomachinery uses high rotational speeds to produce amazing amounts of power efficiently. The key to increasing its longevity, efficiency, and reliability lies in the examination of rotor vibration and bearing dynamics, a field called rotordynamics. A valuable textbook for beginners as well as a handy reference for experts, Machinery Vibration and Rotordynamics is teeming with rich technical detail and real-world examples geared toward the study of machine vibration. A logical progression of information covers essential fundamentals, in-depth case studies, and the latest analytical tools used for predicting and preventing damage in rotating machinery. Machinery Vibration and Rotordynamics: Combines rotordynamics with the applications of machinery vibration in a single volume Includes case studies of vibration problems in several different types of machines as well as computer simulation models used in industry Contains fundamental physical phenomena, mathematical and computational aspects, practical hardware considerations, troubleshooting, and instrumentation and measurement techniques For students interested in entering this highly specialized field of study, as well as professionals seeking to expand their knowledge base, Machinery Vibration and Rotordynamics will serve as the one book they will come to rely upon consistently.
Publisher: John Wiley & Sons
ISBN: 0470916079
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
An in-depth analysis of machine vibration in rotating machinery Whether it's a compressor on an offshore platform, a turbocharger in a truck or automobile, or a turbine in a jet airplane, rotating machinery is the driving force behind almost anything that produces or uses energy. Counted on daily to perform any number of vital societal tasks, turbomachinery uses high rotational speeds to produce amazing amounts of power efficiently. The key to increasing its longevity, efficiency, and reliability lies in the examination of rotor vibration and bearing dynamics, a field called rotordynamics. A valuable textbook for beginners as well as a handy reference for experts, Machinery Vibration and Rotordynamics is teeming with rich technical detail and real-world examples geared toward the study of machine vibration. A logical progression of information covers essential fundamentals, in-depth case studies, and the latest analytical tools used for predicting and preventing damage in rotating machinery. Machinery Vibration and Rotordynamics: Combines rotordynamics with the applications of machinery vibration in a single volume Includes case studies of vibration problems in several different types of machines as well as computer simulation models used in industry Contains fundamental physical phenomena, mathematical and computational aspects, practical hardware considerations, troubleshooting, and instrumentation and measurement techniques For students interested in entering this highly specialized field of study, as well as professionals seeking to expand their knowledge base, Machinery Vibration and Rotordynamics will serve as the one book they will come to rely upon consistently.
Rotor Dynamics
Author: J. S. Rao
Publisher: New Age International
ISBN: 9788122409772
Category : Rotors
Languages : en
Pages : 460
Book Description
The Third Revised And Enlarged Edition Of The Book Presents An In-Depth Study Of The Dynamic Behaviour Of Rotating And Reciprocating Machinery. It Evolved Out Of Lectures Delivered At Different Universities Over The Last Two Decades. The Book Deals With Torsional And Bending Vibrations Of Rotors, Stability Aspects, Balancing And Condition Monitoring. Closed Form Solutions Are Given Wherever Possible And Parametric Studies Presented To Give A Clear Understanding Of The Subject. Transfer Matrix Methods Is Extensively Used For General Class Of Rotors For Both Bending And Torsional Vibrations.Special Attentions Are Given To Transient Analysis Of The Rotors Which Is Becoming An Essential Part Of The Design Of High Speed Machinery. Systems With Fluid Film Bearings, Cracked Rotors And Two Spool Rotors Are Also Presented.A First Course On Theory Of Vibration Is A Prerequisite To This Study. Analysis Used Is Fairly Simple, But Sufficiently Advanced To The Requisite Level Of Predicting Practical Observations. As Far As Possible, Practical Examples Are Illustrated, So That The Book Is Also Useful To Practising Engineers.A Special Feature Of This Book Is Diagnostics Of Rotating Machinery Using Vibration Signature Analysis And Application Of Expert Systems To A Field Engineer In Trouble Shooting Work.
Publisher: New Age International
ISBN: 9788122409772
Category : Rotors
Languages : en
Pages : 460
Book Description
The Third Revised And Enlarged Edition Of The Book Presents An In-Depth Study Of The Dynamic Behaviour Of Rotating And Reciprocating Machinery. It Evolved Out Of Lectures Delivered At Different Universities Over The Last Two Decades. The Book Deals With Torsional And Bending Vibrations Of Rotors, Stability Aspects, Balancing And Condition Monitoring. Closed Form Solutions Are Given Wherever Possible And Parametric Studies Presented To Give A Clear Understanding Of The Subject. Transfer Matrix Methods Is Extensively Used For General Class Of Rotors For Both Bending And Torsional Vibrations.Special Attentions Are Given To Transient Analysis Of The Rotors Which Is Becoming An Essential Part Of The Design Of High Speed Machinery. Systems With Fluid Film Bearings, Cracked Rotors And Two Spool Rotors Are Also Presented.A First Course On Theory Of Vibration Is A Prerequisite To This Study. Analysis Used Is Fairly Simple, But Sufficiently Advanced To The Requisite Level Of Predicting Practical Observations. As Far As Possible, Practical Examples Are Illustrated, So That The Book Is Also Useful To Practising Engineers.A Special Feature Of This Book Is Diagnostics Of Rotating Machinery Using Vibration Signature Analysis And Application Of Expert Systems To A Field Engineer In Trouble Shooting Work.
Fundamentals of Rotating Machinery Diagnostics
Author: Donald E. Bently
Publisher: American Society of Mechanical Engineers
ISBN:
Category : Science
Languages : en
Pages : 768
Book Description
A practical course in the fundamentals of machinery diagnostics for anyone who works with rotating machinery, from operator to manager, from design engineer to machinery diagnostician. This comprehensive book thoroughly explains and demystifies important concepts needed for effective machinery malfunction diagnosis: (A) Vibration fundamentals: vibration, phase, and vibration vectors. (B) Data plots: timebase, average shaft centerline, polar, Bode, APHT, spectrum, trend XY, and the orbit. (C) Rotor dynamics: the rotor model, dynamic stiffness, modes of vibration, anisotropic (asymmetric) stiffness, stability analysis, torsional and axial vibration, and basic balancing. Modern root locus methods (pioneered by Walter R. Evans) are used throughout this book. (D) Malfunctions: unbalance, rotor bow, high radial loads, misalignment, rub and looseness, fluid-induced instability, and shaft cracks. Hundreds of full-color illustrations explain key concepts, and several detailed case studies show how these concepts were used to solve real machinery problems. A comprehensive glossary of diagnostic terms is included.
Publisher: American Society of Mechanical Engineers
ISBN:
Category : Science
Languages : en
Pages : 768
Book Description
A practical course in the fundamentals of machinery diagnostics for anyone who works with rotating machinery, from operator to manager, from design engineer to machinery diagnostician. This comprehensive book thoroughly explains and demystifies important concepts needed for effective machinery malfunction diagnosis: (A) Vibration fundamentals: vibration, phase, and vibration vectors. (B) Data plots: timebase, average shaft centerline, polar, Bode, APHT, spectrum, trend XY, and the orbit. (C) Rotor dynamics: the rotor model, dynamic stiffness, modes of vibration, anisotropic (asymmetric) stiffness, stability analysis, torsional and axial vibration, and basic balancing. Modern root locus methods (pioneered by Walter R. Evans) are used throughout this book. (D) Malfunctions: unbalance, rotor bow, high radial loads, misalignment, rub and looseness, fluid-induced instability, and shaft cracks. Hundreds of full-color illustrations explain key concepts, and several detailed case studies show how these concepts were used to solve real machinery problems. A comprehensive glossary of diagnostic terms is included.
Turbomachinery Rotordynamics
Author: Dara Childs
Publisher: John Wiley & Sons
ISBN: 9780471538400
Category : Science
Languages : en
Pages : 496
Book Description
Imparts the theory and analysis regarding the dynamics of rotating machinery in order to design such rotating devices as turbines, jet engines, pumps and power-transmission shafts. Takes into account the forces acting upon machine structures, bearings and related components. Provides numerical techniques for analyzing and understanding rotor systems with examples of actual designs. Features an excellent treatment of numerical methods available to obtain computer solutions for authentic design problems.
Publisher: John Wiley & Sons
ISBN: 9780471538400
Category : Science
Languages : en
Pages : 496
Book Description
Imparts the theory and analysis regarding the dynamics of rotating machinery in order to design such rotating devices as turbines, jet engines, pumps and power-transmission shafts. Takes into account the forces acting upon machine structures, bearings and related components. Provides numerical techniques for analyzing and understanding rotor systems with examples of actual designs. Features an excellent treatment of numerical methods available to obtain computer solutions for authentic design problems.
Rotordynamics ’92
Author: Michael J. Goodwin
Publisher: Springer
ISBN: 9783540197546
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Designers and operators of rotating machinery have to deal with the effects of machine vibration and wear. The increasing demands for quieter machine operation, longer machine life and a greater efficiency of operation have led to the use of sophisticated design aids. Research into rotating machinery is therefore of substantial and increasing importance. Rotordynamics '92 provides a record of some of the most recent research methods and results relating to the design and operation of rotating machinery. The conference is international in character and draws on research from a wide range of respected sources.
Publisher: Springer
ISBN: 9783540197546
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Designers and operators of rotating machinery have to deal with the effects of machine vibration and wear. The increasing demands for quieter machine operation, longer machine life and a greater efficiency of operation have led to the use of sophisticated design aids. Research into rotating machinery is therefore of substantial and increasing importance. Rotordynamics '92 provides a record of some of the most recent research methods and results relating to the design and operation of rotating machinery. The conference is international in character and draws on research from a wide range of respected sources.
Rotordynamics
Author: Agnieszka Muszynska
Publisher: CRC Press
ISBN: 1420027794
Category : Science
Languages : en
Pages : 1100
Book Description
As the most important parts of rotating machinery, rotors are also the most prone to mechanical vibrations, which may lead to machine failure. Correction is only possible when proper and accurate diagnosis is obtained through understanding of rotor operation and all of the potential malfunctions that may occur. Mathematical modeling, in particular
Publisher: CRC Press
ISBN: 1420027794
Category : Science
Languages : en
Pages : 1100
Book Description
As the most important parts of rotating machinery, rotors are also the most prone to mechanical vibrations, which may lead to machine failure. Correction is only possible when proper and accurate diagnosis is obtained through understanding of rotor operation and all of the potential malfunctions that may occur. Mathematical modeling, in particular
Dynamics of Rotating Machines
Author: M. I. Friswell
Publisher: Cambridge University Press
ISBN: 0521850169
Category : Science
Languages : en
Pages : 545
Book Description
Enables engineers to understand the dynamics of rotating machines, from basic explanations to detailed numerical models and analysis.
Publisher: Cambridge University Press
ISBN: 0521850169
Category : Science
Languages : en
Pages : 545
Book Description
Enables engineers to understand the dynamics of rotating machines, from basic explanations to detailed numerical models and analysis.
Computational Techniques of Rotor Dynamics with the Finite Element Method
Author: Arne Vollan
Publisher: CRC Press
ISBN: 1439847703
Category : Science
Languages : en
Pages : 299
Book Description
For more than a century, we have had a firm grasp on rotor dynamics involving rigid bodies with regular shapes, such as cylinders and shafts. However, to achieve an equally solid understanding of the rotational behavior of flexible bodies—especially those with irregular shapes, such as propeller and turbine blades—we require more modern tools and methods. Computational Techniques of Rotor Dynamics with the Finite Element Method explores the application of practical finite element method (FEM)-based computational techniques and state-of-the-art engineering software. These are used to simulate behavior of rotational structures that enable the function of various types of machinery—from generators and wind turbines to airplane engines and propellers. The book’s first section focuses on the theoretical foundation of rotor dynamics, and the second concentrates on the engineering analysis of rotating structures. The authors explain techniques used in the modeling and computation of the forces involved in the rotational phenomenon. They then demonstrate how to interpret and apply the results to improve fidelity and performance. Coverage includes: Use of FEM to achieve the most accurate computational simulation of all gyroscopic forces occurring in rotational structures Details of highly efficient and accurate computational and numerical techniques for dynamic simulations Interpretation of computational results, which is instrumental to developing stable rotating machinery Practical application examples of rotational structures’ dynamic response to external and internal excitations An FEM case study that illustrates the computational complexities associated with modeling and computation of forces of rotor dynamics Assessment of propellers and turbines that are critical to the transportation and energy industries Useful to practicing engineers and graduate-level students alike, this self-contained volume also serves as an invaluable reference for researchers and instructors in this field. CRC Press Authors Speak Louis Komzsik introduces you to two books that share a common mathematical foundation, the finite element analysis technique. Watch the video.
Publisher: CRC Press
ISBN: 1439847703
Category : Science
Languages : en
Pages : 299
Book Description
For more than a century, we have had a firm grasp on rotor dynamics involving rigid bodies with regular shapes, such as cylinders and shafts. However, to achieve an equally solid understanding of the rotational behavior of flexible bodies—especially those with irregular shapes, such as propeller and turbine blades—we require more modern tools and methods. Computational Techniques of Rotor Dynamics with the Finite Element Method explores the application of practical finite element method (FEM)-based computational techniques and state-of-the-art engineering software. These are used to simulate behavior of rotational structures that enable the function of various types of machinery—from generators and wind turbines to airplane engines and propellers. The book’s first section focuses on the theoretical foundation of rotor dynamics, and the second concentrates on the engineering analysis of rotating structures. The authors explain techniques used in the modeling and computation of the forces involved in the rotational phenomenon. They then demonstrate how to interpret and apply the results to improve fidelity and performance. Coverage includes: Use of FEM to achieve the most accurate computational simulation of all gyroscopic forces occurring in rotational structures Details of highly efficient and accurate computational and numerical techniques for dynamic simulations Interpretation of computational results, which is instrumental to developing stable rotating machinery Practical application examples of rotational structures’ dynamic response to external and internal excitations An FEM case study that illustrates the computational complexities associated with modeling and computation of forces of rotor dynamics Assessment of propellers and turbines that are critical to the transportation and energy industries Useful to practicing engineers and graduate-level students alike, this self-contained volume also serves as an invaluable reference for researchers and instructors in this field. CRC Press Authors Speak Louis Komzsik introduces you to two books that share a common mathematical foundation, the finite element analysis technique. Watch the video.