History Matching and Two Phase Production Analysis for Shale Gas Reservoirs PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download History Matching and Two Phase Production Analysis for Shale Gas Reservoirs PDF full book. Access full book title History Matching and Two Phase Production Analysis for Shale Gas Reservoirs by Srinivasan Kalakkadu Venkatasubramanian. Download full books in PDF and EPUB format.

History Matching and Two Phase Production Analysis for Shale Gas Reservoirs

History Matching and Two Phase Production Analysis for Shale Gas Reservoirs PDF Author: Srinivasan Kalakkadu Venkatasubramanian
Publisher:
ISBN:
Category : Gas reservoirs
Languages : en
Pages : 192

Book Description


History Matching and Two Phase Production Analysis for Shale Gas Reservoirs

History Matching and Two Phase Production Analysis for Shale Gas Reservoirs PDF Author: Srinivasan Kalakkadu Venkatasubramanian
Publisher:
ISBN:
Category : Gas reservoirs
Languages : en
Pages : 192

Book Description


Production Analysis and Forecasting of Shale Reservoirs Using Simple Mechanistic and Statistical Modeling

Production Analysis and Forecasting of Shale Reservoirs Using Simple Mechanistic and Statistical Modeling PDF Author: Leopoldo Matias Ruiz Maraggi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Accurate production analysis and forecasting of well’s performance is essential to estimate reserves and to develop strategies to optimize hydrocarbon recovery. In the case of shale resources, this task is particularly challenging for the following reasons. First, these reservoirs show long periods of transient linear flow in which the reservoir volume grows continuously over time acting without bounds. Second, variable operating conditions cause scatter and abrupt production changes. Finally, the presence of competing flow mechanisms, heterogeneities, and multi-phase flow effects make the production analysis more complex. Detailed numerical flow models can address the complexities present in unconventional reservoirs. However, these models suffer from the following limitations: (a) the uncertainty of many input parameters, (b) susceptibility to overfit the data, (c) lack of interpretability of their results, and (d) high computational expense. This dissertation provides new and simple mechanistic and statistical modeling tools suitable to improve the production analysis and forecasts of shale reservoirs. This work presents solutions to the following research problems. This study develops and applies a new two-phase (oil and gas) flow suitable to history-match and forecast production of tight-oil and gas-condensate reservoirs producing below bubble- and dew-point conditions, respectively. It solves flow equations in dimensionless form and uses only two scaling parameters (hydrocarbon in-place and characteristic time) to history-match production. For this reason, the model requires minimal time to run making it ideal for decline curve analysis on large numbers of wells. This research illustrates the development and application of a Bayesian framework that generates probabilistic production history matches and forecasts to address the uncertainty of model’s estimates. This work uses an adaptative Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm to guarantee a fast convergence of the Markov chains by accounting for the correlation among model’s parameters. In addition, this study calibrates the model’s probabilistic estimates using hindcasting and evaluates the inferences robustness using posterior predictive checks. This dissertation examines the problem of evaluation, ranking and selection, and averaging of models for improved probabilistic production history-matching and forecasting. We illustrate the assessment of the predictive accuracy of four rate-time models using the expected log predictive density (elpd) accuracy metric along with cross-validation techniques (leave-one-out and leave-future-out). The elpd metric provides a measure of out-of-sample predictive accuracy of a model’s posterior distribution. The application of Pareto smoothed importance sampling (PSIS) allows to use cross-validation techniques without the need of refitting Bayesian models. Using the Bayesian Bootstrap, this work generates a model ensemble that weighs each individual model based on the accuracy of its predictions. Finally, this research applies a novel deconvolution technique to incorporate changing operating conditions into rate-time analysis of tight-oil and shale gas reservoirs. Furthermore, this work quantifies the errors and discusses the limitations of the standard rate-transient analysis technique used in production analysis of unconventional reservoirs: rate normalization and material balance time

Shale Gas and Tight Oil Reservoir Simulation

Shale Gas and Tight Oil Reservoir Simulation PDF Author: Wei Yu
Publisher: Gulf Professional Publishing
ISBN: 0128138696
Category : Science
Languages : en
Pages : 432

Book Description
Shale Gas and Tight Oil Reservoir Simulation delivers the latest research and applications used to better manage and interpret simulating production from shale gas and tight oil reservoirs. Starting with basic fundamentals, the book then includes real field data that will not only generate reliable reserve estimation, but also predict the effective range of reservoir and fracture properties through multiple history matching solutions. Also included are new insights into the numerical modelling of CO2 injection for enhanced oil recovery in tight oil reservoirs. This information is critical for a better understanding of the impacts of key reservoir properties and complex fractures. Models the well performance of shale gas and tight oil reservoirs with complex fracture geometries Teaches how to perform sensitivity studies, history matching, production forecasts, and economic optimization for shale-gas and tight-oil reservoirs Helps readers investigate data mining techniques, including the introduction of nonparametric smoothing models

A New Method for History Matching and Forecasting Shale Gas/oil Reservoir Production Performance with Dual and Triple Porosity Models

A New Method for History Matching and Forecasting Shale Gas/oil Reservoir Production Performance with Dual and Triple Porosity Models PDF Author: Orkhan Samandarli
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Different methods have been proposed for history matching production of shale gas/oil wells which are drilled horizontally and usually hydraulically fractured with multiple stages. These methods are simulation, analytical models, and empirical equations. It has been well known that among the methods listed above, analytical models are more favorable in application to field data for two reasons. First, analytical solutions are faster than simulation, and second, they are more rigorous than empirical equations. Production behavior of horizontally drilled shale gas/oil wells has never been completely matched with the models which are described in this thesis. For shale gas wells, correction due to adsorption is explained with derived equations. The algorithm which is used for history matching and forecasting is explained in detail with a computer program as an implementation of it that is written in Excel's VBA. As an objective of this research, robust method is presented with a computer program which is applied to field data. The method presented in this thesis is applied to analyze the production performance of gas wells from Barnett, Woodford, and Fayetteville shales. It is shown that the method works well to understand reservoir description and predict future performance of shale gas wells. Moreover, synthetic shale oil well also was used to validate application of the method to oil wells. Given the huge unconventional resource potential and increasing energy demand in the world, the method described in this thesis will be the "game changing" technology to understand the reservoir properties and make future predictions in short period of time.

Well Production Performance Analysis for Shale Gas Reservoirs

Well Production Performance Analysis for Shale Gas Reservoirs PDF Author: Liehui Zhang
Publisher: Elsevier
ISBN: 0444643168
Category : Business & Economics
Languages : en
Pages : 388

Book Description
Well Production Performance Analysis for Shale Gas Reservoirs, Volume 66 presents tactics and discussions that are urgently needed by the petroleum community regarding unconventional oil and gas resources development and production. The book breaks down the mechanics of shale gas reservoirs and the use of mathematical models to analyze their performance. Features an in-depth analysis of shale gas horizontal fractured wells and how they differ from their conventional counterparts Includes detailed information on the testing of fractured horizontal wells before and after fracturing Offers in-depth analysis of numerical simulation and the importance of this tool for the development of shale gas reservoirs

New Advances in Shale Gas Reservoir Analysis Using Water Flowback Data

New Advances in Shale Gas Reservoir Analysis Using Water Flowback Data PDF Author: Ahmad Alkouh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Shale gas reservoirs with multistage hydraulic fractures are commonly characterized by analyzing long-term gas production data, but water flowback data is usually not included in the analysis. However, this work shows there can be benefits to including post-frac water flowback and long-term water production data in well analysis. In addition, field data indicate that only 10-40% of the frac water is recovered after the flowback. This work addresses two main question: Where is the rest of the injected frac fluid that is not recovered and what is the mechanism that is trapping it? And how can the water flowback data be used in estimating effective fracture volume using production data analysis tools? A number of simulation cases were run for single and two phase (gas/water) for modeling flowback and long-term production periods. Various physical assumptions were investigated for the saturations and properties that exist in the fracture/matrix system after hydraulic fracturing. The results of these simulations were compared with analytical solutions and data from actual wells using diagnostic and specialized plots. The results of these comparisons led to certain conclusions and procedures describing possible reservoir conditions after hydraulic fracturing and during production. Past publications have suggested that the lost frac water is trapped in the natural fracture or imbibed into the rock matrix near the fracture face. Natural fracture spacing could be a possible explanation of the lost frac water. These concepts are tested and the challenge of simulating a natural fracture with trapped water without imbibition is solved using a new hybrid relative permeability jail. This concept was tested for the period of flowback, shut-in and production. This work presents the benefits of a new method for combining water flowback and long-term water production data in shale gas analysis. Water production analysis can provide effective fracture volume which was confirmed by the cumulative produced water. This will help when evaluating fracture-stimulation jobs. It also shows the benefits of combining flowback and long-term water production data in the analysis of shale gas wells. In some cases, the time shift on diagnostic plots changes the apparent flow regime identification of early gas production data. This leads to different models of the fracture/matrix system. The presented work shows the importance of collecting and including water flowback data in long-term production data. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/152548

Unconventional Reservoir Rate-Transient Analysis

Unconventional Reservoir Rate-Transient Analysis PDF Author: Clarkson C.R.
Publisher: Gulf Professional Publishing
ISBN: 0323901174
Category : Science
Languages : en
Pages : 1144

Book Description
Unconventional Reservoir Rate-Transient Analysis provides petroleum engineers and geoscientists with the first comprehensive review of rate-transient analysis (RTA) methods as applied to unconventional reservoirs. Volume One—Fundamentals, Analysis Methods, and Workflow is comprised of five chapters which address key concepts and analysis methods used in RTA. This volume overviews the fundamentals of RTA, as applied to low-permeability oil and gas reservoirs exhibiting simple reservoir and fluid characteristics. Volume Two—Application to Complex Reservoirs, Exploration and Development is comprised of four chapters that demonstrate how RTA can be applied to coalbed methane reservoirs, shale gas reservoirs, and low-permeability/shale reservoirs exhibiting complex behavior such as multiphase flow. Use of RTA to assist exploration and development programs in unconventional reservoirs is also demonstrated. This book will serve as a critical guide for students, academics, and industry professionals interested in applying RTA methods to unconventional reservoirs. Gain a comprehensive review of key concepts and analysis methods used in modern rate-transient analysis (RTA) as applied to low-permeability ("tight") oil and gas reservoirs Improve your RTA methods by providing reservoir/hydraulic fracture properties and hydrocarbon-in-place estimates for unconventional gas and light oil reservoirs exhibiting complex reservoir behaviors Understand the provision of a workflow for confident application of RTA to unconventional reservoirs

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation PDF Author: Kamy Sepehrnoori
Publisher: Elsevier
ISBN: 0128196882
Category : Business & Economics
Languages : en
Pages : 306

Book Description
The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs Offers understanding of the impacts of key reservoir properties and complex fractures on well performance Provides case studies to show how to use the EDFM method for different needs

History-matching and Forecasting of Three Unconventional Oil and Gas Reservoirs Using Decline Analyses and Type Curves

History-matching and Forecasting of Three Unconventional Oil and Gas Reservoirs Using Decline Analyses and Type Curves PDF Author: Hammad Ahmed
Publisher:
ISBN:
Category :
Languages : en
Pages : 48

Book Description
Reservoir modeling of shale gas and tight oil presents numerous challenges due to complicated transport mechanisms and the existence of fracture networks. Even then, oil and gas companies have not slowed down on shale hydrocarbon investment and production using horizontal well drilling and hydraulic fracturing techniques. Many small oil companies may not have the budget to build a reservoir model which typically requires drilling test wells and performing well logging measurements. Even for large oil companies, building a reservoir model is not worthwhile for the evaluation of small-scale oil fields. Comprehensive numerical simulation methods are likely impractical in those cases. Decline Curve Analysis (DCA) is one of the most convenient and practical techniques in order to forecast the production of these reservoirs. With the rapid increase in shale hydrocarbon production over the past 30 years, there have been numerous production data for shale gas reservoirs. Many different DCA models have been constructed to model the shale hydrocarbon production rate, from the classical Arps to the latest and more advanced models; each has its advantages and shortcomings. In practice and in all existing commercial DCA software, most of these DCA models are implemented and open to be used. Most of the deterministic DCA models are empirical and lack a physical background so that they cannot be used for history-matching of the reservoir properties. In this study, popular DCA models for shale gas reservoirs are reviewed, including the types of reservoirs they fit. Their advantages and disadvantages have also been presented. This work will serve as a guideline for petroleum engineers to determine which DCA models should be applied to different shale hydrocarbon fields and production periods. The research objective also includes evaluating the performance of top unconventional plays (Bakken, Barnett, and Eagle Ford). Productions by counties are analyzed and compared to see how they stack up against each other. One section of this study also sheds some light on the future of shale gas and tight oil plays based on the simulation of models created.

Shale Analytics

Shale Analytics PDF Author: Shahab D. Mohaghegh
Publisher: Springer
ISBN: 3319487531
Category : Technology & Engineering
Languages : en
Pages : 292

Book Description
This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.