Blow-up Theories for Semilinear Parabolic Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Blow-up Theories for Semilinear Parabolic Equations PDF full book. Access full book title Blow-up Theories for Semilinear Parabolic Equations by Bei Hu. Download full books in PDF and EPUB format.

Blow-up Theories for Semilinear Parabolic Equations

Blow-up Theories for Semilinear Parabolic Equations PDF Author: Bei Hu
Publisher: Springer
ISBN: 364218460X
Category : Mathematics
Languages : en
Pages : 137

Book Description
There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.

Blow-up Theories for Semilinear Parabolic Equations

Blow-up Theories for Semilinear Parabolic Equations PDF Author: Bei Hu
Publisher: Springer
ISBN: 364218460X
Category : Mathematics
Languages : en
Pages : 137

Book Description
There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.

Spatial Patterns

Spatial Patterns PDF Author: L.A. Peletier
Publisher: Springer Science & Business Media
ISBN: 1461201357
Category : Mathematics
Languages : en
Pages : 347

Book Description
The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations.

Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations PDF Author: C.M. Dafermos
Publisher: Elsevier
ISBN: 0080461387
Category : Mathematics
Languages : en
Pages : 677

Book Description
The aim of this Handbook is to acquaint the reader with the current status of the theory of evolutionary partial differential equations, and with some of its applications. Evolutionary partial differential equations made their first appearance in the 18th century, in the endeavor to understand the motion of fluids and other continuous media. The active research effort over the span of two centuries, combined with the wide variety of physical phenomena that had to be explained, has resulted in an enormous body of literature. Any attempt to produce a comprehensive survey would be futile. The aim here is to collect review articles, written by leading experts, which will highlight the present and expected future directions of development of the field. The emphasis will be on nonlinear equations, which pose the most challenging problems today.. Volume I of this Handbook does focus on the abstract theory of evolutionary equations. . Volume 2 considers more concrete problems relating to specific applications. . Together they provide a panorama of this amazingly complex and rapidly developing branch of mathematics.

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 1482251736
Category : Mathematics
Languages : en
Pages : 565

Book Description
Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.The book

Superlinear Parabolic Problems

Superlinear Parabolic Problems PDF Author: Prof. Dr. Pavol Quittner
Publisher: Springer
ISBN: 3030182223
Category : Mathematics
Languages : en
Pages : 738

Book Description
This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The first two chapters introduce to the field and enable the reader to get acquainted with the main ideas by studying simple model problems, respectively of elliptic and parabolic type. The subsequent three chapters are devoted to problems with more complex structure; namely, elliptic and parabolic systems, equations with gradient depending nonlinearities, and nonlocal equations. They include many developments which reflect several aspects of current research. Although the techniques introduced in the first two chapters provide efficient tools to attack some aspects of these problems, they often display new phenomena and specifically different behaviors, whose study requires new ideas. Many open problems are mentioned and commented. The book is self-contained and up-to-date, it has a high didactic quality. It is devoted to problems that are intensively studied but have not been treated so far in depth in the book literature. The intended audience includes graduate and postgraduate students and researchers working in the field of partial differential equations and applied mathematics. The first edition of this book has become one of the standard references in the field. This second edition provides a revised text and contains a number of updates reflecting significant recent advances that have appeared in this growing field since the first edition.

Construction of Blowup Solutions for the Complex Ginzburg-Landau Equation with Critical Parameters

Construction of Blowup Solutions for the Complex Ginzburg-Landau Equation with Critical Parameters PDF Author: Giao Ky Duong
Publisher: American Mathematical Society
ISBN: 1470461218
Category : Mathematics
Languages : en
Pages : 104

Book Description
View the abstract.

International Conference on Differential Equations, Berlin, Germany, 1-7 August, 1999

International Conference on Differential Equations, Berlin, Germany, 1-7 August, 1999 PDF Author: Bernold Fiedler
Publisher: World Scientific
ISBN: 9789810249885
Category : Differential equations
Languages : en
Pages : 846

Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences

Superlinear Parabolic Problems

Superlinear Parabolic Problems PDF Author: Pavol Quittner
Publisher:
ISBN: 9780817684419
Category : Differential equations, Elliptic
Languages : en
Pages : 0

Book Description
"This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology." "The book is self-contained and up-to-date, it has a high didactic quality. It is devoted to problems that are intensively studied but have not been treated so far in depth in the book literature. The intended audience includes graduate and postgraduate students and researchers working in the field of partial differential equations and applied mathematics." -- Book Jacket.

Mathematics And Mathematics Education, Procs Of The Third Intl Palestinian Conf

Mathematics And Mathematics Education, Procs Of The Third Intl Palestinian Conf PDF Author: Raghib Abu-saris
Publisher: World Scientific
ISBN: 9814490342
Category : Mathematics
Languages : en
Pages : 358

Book Description
This volume covers a wide range of areas in mathematics and mathematics education. There is emphasis on applied mathematics, including partial differential equations, dynamical systems, and difference equations. Other areas represented include algebra and number theory, statistics, and issues in mathematics education.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)

On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation

On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation PDF Author: Charles Collot
Publisher: American Mathematical Soc.
ISBN: 1470436264
Category : Mathematics
Languages : en
Pages : 110

Book Description
The authors consider the energy super critical semilinear heat equation The authors first revisit the construction of radially symmetric self similar solutions performed through an ode approach and propose a bifurcation type argument which allows for a sharp control of the spectrum of the corresponding linearized operator in suitable weighted spaces. They then show how the sole knowledge of this spectral gap in weighted spaces implies the finite codimensional nonradial stability of these solutions for smooth well localized initial data using energy bounds. The whole scheme draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.