Author: J.H. Eberly
Publisher: Springer Science & Business Media
ISBN: 146130847X
Category : Science
Languages : en
Pages : 1174
Book Description
The conference, held at the U. of Rochester in June 1989, was a sequel to five earlier meetings in this series, held in 1960, 1966, 1972, 1977 and 1983. This volume contains abbreviated versions of most of the 252 papers presented, addressing such topics as laser spectroscopy, photon statistics, pha
Coherence and Quantum Optics VI
Author: J.H. Eberly
Publisher: Springer Science & Business Media
ISBN: 146130847X
Category : Science
Languages : en
Pages : 1174
Book Description
The conference, held at the U. of Rochester in June 1989, was a sequel to five earlier meetings in this series, held in 1960, 1966, 1972, 1977 and 1983. This volume contains abbreviated versions of most of the 252 papers presented, addressing such topics as laser spectroscopy, photon statistics, pha
Publisher: Springer Science & Business Media
ISBN: 146130847X
Category : Science
Languages : en
Pages : 1174
Book Description
The conference, held at the U. of Rochester in June 1989, was a sequel to five earlier meetings in this series, held in 1960, 1966, 1972, 1977 and 1983. This volume contains abbreviated versions of most of the 252 papers presented, addressing such topics as laser spectroscopy, photon statistics, pha
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 712
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 712
Book Description
Principles of Laser Spectroscopy and Quantum Optics
Author: Paul R. Berman
Publisher: Princeton University Press
ISBN: 1400837049
Category : Science
Languages : en
Pages : 538
Book Description
Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)
Publisher: Princeton University Press
ISBN: 1400837049
Category : Science
Languages : en
Pages : 538
Book Description
Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)
American Doctoral Dissertations
Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 776
Book Description
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 776
Book Description
Theoretical Aspects of Laser Radiation and Its Interaction with Atomic and Molecular Systems
Coherence and Quantum Optics
Atomic Physics 3
Author: Stephen Smith
Publisher: Springer Science & Business Media
ISBN: 1468429612
Category : Science
Languages : en
Pages : 669
Book Description
Session A.- Status of QED Experiments.- Status of Quantum Electrodynamics Theory.- Atomic Physics and Quantum Electrodynamics in the Infinite Momentum Frame.- Theories of the Fine Structure Constant ?.- gJ(H)/gS(e) Determination: Preliminary Results.- Session B.- Exotic Atoms.- Highly Excited States of Helium and Neon.- Theoretical Study of Atomic Rydberg States.- Inner-Shell Ionization by Heavy Charged Particles.- Fine Structure and Hyperfine Structure of the Helium Negative Ion.- Statistical Theory of Atom and Ion Polarizabilities.- Session C.- Ab Initio Calculations of Atomic Energy Spectra.
Publisher: Springer Science & Business Media
ISBN: 1468429612
Category : Science
Languages : en
Pages : 669
Book Description
Session A.- Status of QED Experiments.- Status of Quantum Electrodynamics Theory.- Atomic Physics and Quantum Electrodynamics in the Infinite Momentum Frame.- Theories of the Fine Structure Constant ?.- gJ(H)/gS(e) Determination: Preliminary Results.- Session B.- Exotic Atoms.- Highly Excited States of Helium and Neon.- Theoretical Study of Atomic Rydberg States.- Inner-Shell Ionization by Heavy Charged Particles.- Fine Structure and Hyperfine Structure of the Helium Negative Ion.- Statistical Theory of Atom and Ion Polarizabilities.- Session C.- Ab Initio Calculations of Atomic Energy Spectra.
High-resolution Laser Spectroscopy
Author: N. Bloembergen
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 404
Book Description
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 404
Book Description
Progress in Atomic Spectroscopy
Author: W. Hanle
Publisher: Springer Science & Business Media
ISBN: 1461326478
Category : Science
Languages : en
Pages : 645
Book Description
H. J. BEYER AND H. KLEINPOPPEN During the preparation of Parts A and B of Progress in Atomic Spectros copy a few years ago, it soon became obvious that a comprehensive review and description of this field of modern atomic physics could not be achieved within the limitations of a two-volume book. While it was possible to include a large variety of spectroscopic methods, inevitably some fields had to be cut short or left out altogether. Other fields have developed so rapidly that they demand full cover in an additional volume. One of the major problems, already encountered during the prepar ation of the first volumes, was to keep track of new developments and approaches which result in spectroscopic data. We have to look far beyond the area of traditional atomic spectroscopy since methods of atomic and ion collision physics, nuclear physics, and even particle physics all make important contributions to our knowledge of the static and dynamical state of atoms and ions, and thereby greatly add to the continuing fascination of a field of research which has given us so much fundamental knowledge since the middle of the last century. In this volume, we have tried to strike a balance between contribu tions belonging to the more established fields of atomic structure and spectroscopy and those fields where atomic spectroscopy overlaps with other areas.
Publisher: Springer Science & Business Media
ISBN: 1461326478
Category : Science
Languages : en
Pages : 645
Book Description
H. J. BEYER AND H. KLEINPOPPEN During the preparation of Parts A and B of Progress in Atomic Spectros copy a few years ago, it soon became obvious that a comprehensive review and description of this field of modern atomic physics could not be achieved within the limitations of a two-volume book. While it was possible to include a large variety of spectroscopic methods, inevitably some fields had to be cut short or left out altogether. Other fields have developed so rapidly that they demand full cover in an additional volume. One of the major problems, already encountered during the prepar ation of the first volumes, was to keep track of new developments and approaches which result in spectroscopic data. We have to look far beyond the area of traditional atomic spectroscopy since methods of atomic and ion collision physics, nuclear physics, and even particle physics all make important contributions to our knowledge of the static and dynamical state of atoms and ions, and thereby greatly add to the continuing fascination of a field of research which has given us so much fundamental knowledge since the middle of the last century. In this volume, we have tried to strike a balance between contribu tions belonging to the more established fields of atomic structure and spectroscopy and those fields where atomic spectroscopy overlaps with other areas.
Laser and Coherence Spectroscopy
Author: Jeffrey Steinfeld
Publisher: Springer Science & Business Media
ISBN: 1468423525
Category : Science
Languages : en
Pages : 543
Book Description
The impact which has been made on spectroscopy by lasers, and by this route on major segments of physics and chemistry, has received ample documen tation in the past several years. Two principal themes emerge from examina tion of the numerous books and monographs now available on this subject: first, an increase in spectral resolution to levels previously undreamed of; and, second, the generation of nonlinear phenomena as a result of the intense radiation fields available from laser devices. There is one additional property of laser radiation which, although used extensively in experiments, does not appear to have been as thoroughly reviewed as the foregoing aspects. This is the spatial and temporal coherence of the radiation field produced by the laser, which makes possible the coherent excitation of molecular energy states. This feature is the subject of the present volume. While the use of coherence methods in spectroscopy has been paced by lasers, it is by no me ans restricted to this technology. In the second and fourth chapters, microwave sources are discussed as generators of coherent radiation fields and are used to probe both rotational energy levels and spin states of electronically excited molecules. The phenomena discussed in this book, such as nutation, free induction decay, radiative echoes, rapid pas sage, and so forth, are really the same in different regions of the spectrum, and themselves echo from one chapter to the next.
Publisher: Springer Science & Business Media
ISBN: 1468423525
Category : Science
Languages : en
Pages : 543
Book Description
The impact which has been made on spectroscopy by lasers, and by this route on major segments of physics and chemistry, has received ample documen tation in the past several years. Two principal themes emerge from examina tion of the numerous books and monographs now available on this subject: first, an increase in spectral resolution to levels previously undreamed of; and, second, the generation of nonlinear phenomena as a result of the intense radiation fields available from laser devices. There is one additional property of laser radiation which, although used extensively in experiments, does not appear to have been as thoroughly reviewed as the foregoing aspects. This is the spatial and temporal coherence of the radiation field produced by the laser, which makes possible the coherent excitation of molecular energy states. This feature is the subject of the present volume. While the use of coherence methods in spectroscopy has been paced by lasers, it is by no me ans restricted to this technology. In the second and fourth chapters, microwave sources are discussed as generators of coherent radiation fields and are used to probe both rotational energy levels and spin states of electronically excited molecules. The phenomena discussed in this book, such as nutation, free induction decay, radiative echoes, rapid pas sage, and so forth, are really the same in different regions of the spectrum, and themselves echo from one chapter to the next.