Galerkin Finite Element Methods for Parabolic Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Galerkin Finite Element Methods for Parabolic Problems PDF full book. Access full book title Galerkin Finite Element Methods for Parabolic Problems by Vidar Thomee. Download full books in PDF and EPUB format.

Galerkin Finite Element Methods for Parabolic Problems

Galerkin Finite Element Methods for Parabolic Problems PDF Author: Vidar Thomee
Publisher: Springer Science & Business Media
ISBN: 3662033593
Category : Mathematics
Languages : en
Pages : 310

Book Description
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.

Galerkin Finite Element Methods for Parabolic Problems

Galerkin Finite Element Methods for Parabolic Problems PDF Author: Vidar Thomee
Publisher: Springer Science & Business Media
ISBN: 3662033593
Category : Mathematics
Languages : en
Pages : 310

Book Description
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.

Differential Models

Differential Models PDF Author: Alexander Solodov
Publisher: Springer Science & Business Media
ISBN: 9783540208525
Category : Mathematics
Languages : en
Pages : 252

Book Description
Differential equations are often used in mathematical models for technological processes or devices. However, the design of a differential mathematical model iscrucial anddifficult in engineering. As a hands-on approach to learn how to pose a differential mathematical modelthe authors have selected 9 examples with important practical application and treat them as following:- Problem-setting and physical model formulation- Designing the differential mathematical model- Integration of the differential equations- Visualization of results Each step of the development ofa differential model isenriched by respective Mathcad 11commands, todays necessary linkage of engineering significance and high computing complexity. TOC:Differential Mathematical Models.- Integrable Differential Equations.- Dynamic Model of the System with Heat Engineering.- Stiff Differential Equations.- Heat Transfer near the Critical Point.- The Faulkner- Skan Equation of Boundary Layer.- The Rayleigh Equation: Hydronamic Instability.- Kinematic Waves of Concentration in Ion- Exchange Filters.- Kinematic Shock Waves.- Numerical Modelling of the CPU-board Temperature Field.- Temperature Waves.

Monthly Catalogue, United States Public Documents

Monthly Catalogue, United States Public Documents PDF Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1994

Book Description


Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations

Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations PDF Author: Sigal Gottlieb
Publisher: World Scientific
ISBN: 9814289264
Category : Mathematics
Languages : en
Pages : 189

Book Description
This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for the time evolution of partial differential equations describing a wide range of physical phenomena. This comprehensive book describes the development of SSP methods, explains the types of problems which require the use of these methods and demonstrates the efficiency of these methods using a variety of numerical examples. Another valuable feature of this book is that it collects the most useful SSP methods, both explicit and implicit, and presents the other properties of these methods which make them desirable (such as low storage, small error coefficients, large linear stability domains). This book is valuable for both researchers studying the field of time-discretizations for PDEs, and the users of such methods.

Computational Engineering - Introduction to Numerical Methods

Computational Engineering - Introduction to Numerical Methods PDF Author: Michael Schäfer
Publisher: Springer Nature
ISBN: 3030760278
Category : Technology & Engineering
Languages : en
Pages : 374

Book Description
Numerical simulation methods in all engineering disciplines gains more and more importance. The successful and efficient application of such tools requires certain basic knowledge about the underlying numerical techniques. The text gives a practice-oriented introduction in modern numerical methods as they typically are applied in mechanical, chemical, or civil engineering. Problems from heat transfer, structural mechanics, and fluid mechanics constitute a thematical focus of the text. For the basic understanding of the topic aspects of numerical mathematics, natural sciences, computer science, and the corresponding engineering area are simultaneously important. Usually, the necessary information is distributed in different textbooks from the individual disciplines. In the present text the subject matter is presented in a comprehensive multidisciplinary way, where aspects from the different fields are treated insofar as it is necessary for general understanding. Overarching aspects and important questions related to accuracy, efficiency, and cost effectiveness are discussed. The topics are presented in an introductory manner, such that besides basic mathematical standard knowledge in analysis and linear algebra no further prerequisites are necessary. The book is suitable either for self-study or as an accompanying textbook for corresponding lectures. It can be useful for students of engineering disciplines as well as for computational engineers in industrial practice.

Physics Briefs

Physics Briefs PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 890

Book Description


Finite Element Methods and Their Applications

Finite Element Methods and Their Applications PDF Author: Zhangxin Chen
Publisher: Springer Science & Business Media
ISBN: 3540240780
Category : Science
Languages : en
Pages : 415

Book Description
Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.

Mathematical Visualization

Mathematical Visualization PDF Author: H.-C. Hege
Publisher: Springer Science & Business Media
ISBN: 9783540639916
Category : Mathematics
Languages : en
Pages : 422

Book Description
Mathematical Visualization is a young new discipline. It offers efficient visualization tools to the classical subjects of mathematics, and applies mathematical techniques to problems in computer graphics and scientific visualization. Originally, it started in the interdisciplinary area of differential geometry, numerical mathematics, and computer graphics. In recent years, the methods developed have found important applications. The current volume is the quintessence of an international workshop in September 1997 in Berlin, focusing on recent developments in this emerging area. Experts present selected research work on new algorithms for visualization problems, describe the application and experiments in geometry, and develop new numerical or computer graphical techniques.

Fuzzy Partial Differential Equations and Relational Equations

Fuzzy Partial Differential Equations and Relational Equations PDF Author: Masoud Nikravesh
Publisher: Springer
ISBN: 3540396756
Category : Technology & Engineering
Languages : en
Pages : 362

Book Description
During last decade significant progress has been made in the oil indus try by using soft computing technology. Underlying this evolving technology there have, been ideas transforming the very language we use to describe problems with imprecision, uncertainty and partial truth. These developments offer exciting opportunities, but at the same time it is becoming clearer that further advancements are confronted by funda mental problems. The whole idea of how human process information lies at the core of the challenge. There are already new ways of thinking about the problems within theory of perception-based information. This theory aims to understand and harness the laws of human perceptions to dramatically im prove the processing of information. A matured theory of perception-based information is likely to be proper positioned to contribute to the solution of the problems and provide all the ingredients for a revolution in science, technology and business. In this context, Berkeley Initiative in Soft Computing (BISC), Univer sity of California, Berkeley from one side and Chevron-Texaco from another formed a Technical Committee to organize a Meeting entitled "State of the Art Assessment and New Directions for Research" to understand the signifi cance of the fields accomplishments, new developments and future directions. The Technical Committee selected and invited 15 scientists (and oil indus try experts as technical committee members) from the related disciplines to participate in the Meeting, which took place at the University of California, Berkeley, and March 15-17, 2002.

Computational Methods for Fluid Dynamics

Computational Methods for Fluid Dynamics PDF Author: Joel H Ferziger
Publisher:
ISBN: 9783642976520
Category :
Languages : en
Pages : 380

Book Description