High Magnetic Field Science and Its Application in the United States PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Magnetic Field Science and Its Application in the United States PDF full book. Access full book title High Magnetic Field Science and Its Application in the United States by National Research Council. Download full books in PDF and EPUB format.

High Magnetic Field Science and Its Application in the United States

High Magnetic Field Science and Its Application in the United States PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309286379
Category : Science
Languages : en
Pages : 233

Book Description
The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.

High Magnetic Field Science and Its Application in the United States

High Magnetic Field Science and Its Application in the United States PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309286379
Category : Science
Languages : en
Pages : 233

Book Description
The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.

The National High Magnetic Field Laboratory, A User Facility in Support of Research in High Magnetic Fields

The National High Magnetic Field Laboratory, A User Facility in Support of Research in High Magnetic Fields PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
The National High Magnetic Field Laboratory (NHMFL) develops and operates high magnetic field facilities at its main location at Florida State University, Tallahassee, as well as a pulsed magnetic field facility at Los Alamos National Laboratory. A number of specialized facilities are also available to collaborators at the University of Florida for research at ultra-low temperatures, advanced magnetic resonance imaging, and materials sciences. The NHMFL is supported by the United States National Science Foundation (NSF) and by the State of Florida. It is a user facility available to qualified users through a peer review proposal process. The facilities and staff support research and development at the extremes of parameter space. A part of its activities is devoted to the advancement of the state of the art of superconducting, pulsed, resistive, and hybrid magnets. This involves cryogenic materials research, the development of high strength, high conductivity conductors, and the development of low and ultra low temperature systems.

Opportunities in High Magnetic Field Science

Opportunities in High Magnetic Field Science PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309165318
Category : Science
Languages : en
Pages : 188

Book Description
High-field magnetsâ€"those that operate at the limits of the mechanical and/or electromagnetic properties of their structural materialsâ€"are used as research tools in a variety of scientific disciplines. The study of high magnetic fields themselves is also important in many areas such as astrophysics. Because of their importance in scientific research and the possibility of new breakthroughs, the National Science Foundation asked the National Research Council to assess the current state of and future prospects for high-field science and technology in the United States. This report presents the results of that assessment. It focuses on scientific and technological challenges and opportunities, and not on specific program activities. The report provides findings and recommendations about important research directions, the relative strength of U.S. efforts compared to other countries, and ways in which the program can operate more effectively.

High Magnetic Field Science and Its Application in the United States

High Magnetic Field Science and Its Application in the United States PDF Author: Board on Physics
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Annotation. The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.

Opportunities in High Magnetic Field Science

Opportunities in High Magnetic Field Science PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309095824
Category : Science
Languages : en
Pages : 189

Book Description
High-field magnetsâ€"those that operate at the limits of the mechanical and/or electromagnetic properties of their structural materialsâ€"are used as research tools in a variety of scientific disciplines. The study of high magnetic fields themselves is also important in many areas such as astrophysics. Because of their importance in scientific research and the possibility of new breakthroughs, the National Science Foundation asked the National Research Council to assess the current state of and future prospects for high-field science and technology in the United States. This report presents the results of that assessment. It focuses on scientific and technological challenges and opportunities, and not on specific program activities. The report provides findings and recommendations about important research directions, the relative strength of U.S. efforts compared to other countries, and ways in which the program can operate more effectively.

High Magnetic Field Research and Facilities

High Magnetic Field Research and Facilities PDF Author: National Research Council (U.S.). Panel on High Magnetic Field Research and Facilities
Publisher: National Academies
ISBN:
Category : Magnetic fields
Languages : en
Pages : 116

Book Description


High Magnetic Field Science and Its Application in the United States

High Magnetic Field Science and Its Application in the United States PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309286344
Category : Science
Languages : en
Pages : 233

Book Description
The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.

The Current Status and Future Direction of High-Magnetic-Field Science and Technology in the United States

The Current Status and Future Direction of High-Magnetic-Field Science and Technology in the United States PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309721776
Category : Science
Languages : en
Pages : 0

Book Description
High magnetic fields are a vital tool in many areas of science and technology that impact our everyday lives. Magnetic resonance imaging enables a wide range of medical diagnostics and research, while nuclear magnetic resonance is critical for drug discovery research and more. High magnetic fields are an essential component to many proposed fusion energy reactors and are necessary to push the boundaries towards the development of new quantum technologies and semiconductors. At the request of the National Science Foundation, the National Academies organized a study to identify scientific opportunities and key applications for high-magnetic-field science and technology for the next decade and beyond. This report explores the current state and future prospects for high-magnetic-field technologies and recommends actions to support the workforce, facilities, magnet development, and critical materials access necessary to promote U.S. innovation.

Report of NSF Panel on Large Magnetic Fields

Report of NSF Panel on Large Magnetic Fields PDF Author: National Science Foundation (U.S.). Panel on Large Magnetic Fields
Publisher:
ISBN:
Category : Magnetic fields
Languages : en
Pages : 68

Book Description


Cooperative Stewardship

Cooperative Stewardship PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309068312
Category : Political Science
Languages : en
Pages : 90

Book Description
The Committee on Developing a Federal Materials Facilities Strategy was appointed by the National Research Council (NRC) in response to a request by the federal agencies involved in funding and operating multidisciplinary user facilities for research with synchrotron radiation, neutrons, and high magnetic fields. Starting in August 1996, a series of conversations and meetings was held among NRC staff and officials from the National Science Foundation, the Department of Energy, the National Institute of Standards and Technology (Department of Commerce), and the National Institutes of Health. The agencies were concerned that facilities originally developed to support research in materials science were increasingly used by scientists from other fields-particularly the biological sciences-whose research was supported by agencies other than those responsible for the facilities. This trend, together with the introduction of several new, large user facilities in the last decade, led the agencies to seek advice on the possible need for interagency cooperation in the management of these federal research facilities.