Author: Dhammika Amaratunga
Publisher: Wiley
ISBN: 9781118364543
Category : Mathematics
Languages : en
Pages : 344
Book Description
Praise for the First Edition " ... extremely well written ... a comprehensive and up-to-date overview of this important field."--Journal of Environmental Quality Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition provides comprehensive coverage of recent advancements in microarray data analysis. A cutting-edge guide, the Second Edition demonstrates various methodologies for analyzing data in biomedical research and offers an overview of the modern techniques used in microarray technology to.
Exploration and Analysis of DNA Microarray and Other High-Dimensional Data
Author: Dhammika Amaratunga
Publisher: Wiley
ISBN: 9781118364543
Category : Mathematics
Languages : en
Pages : 344
Book Description
Praise for the First Edition " ... extremely well written ... a comprehensive and up-to-date overview of this important field."--Journal of Environmental Quality Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition provides comprehensive coverage of recent advancements in microarray data analysis. A cutting-edge guide, the Second Edition demonstrates various methodologies for analyzing data in biomedical research and offers an overview of the modern techniques used in microarray technology to.
Publisher: Wiley
ISBN: 9781118364543
Category : Mathematics
Languages : en
Pages : 344
Book Description
Praise for the First Edition " ... extremely well written ... a comprehensive and up-to-date overview of this important field."--Journal of Environmental Quality Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition provides comprehensive coverage of recent advancements in microarray data analysis. A cutting-edge guide, the Second Edition demonstrates various methodologies for analyzing data in biomedical research and offers an overview of the modern techniques used in microarray technology to.
High-Dimensional Data Analysis in Cancer Research
Author: Xiaochun Li
Publisher: Springer Science & Business Media
ISBN: 0387697659
Category : Medical
Languages : en
Pages : 164
Book Description
Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.
Publisher: Springer Science & Business Media
ISBN: 0387697659
Category : Medical
Languages : en
Pages : 164
Book Description
Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.
High-dimensional Microarray Data Analysis
Author: Shuichi Shinmura
Publisher: Springer
ISBN: 9811359989
Category : Medical
Languages : en
Pages : 437
Book Description
This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks. Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel. Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.
Publisher: Springer
ISBN: 9811359989
Category : Medical
Languages : en
Pages : 437
Book Description
This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks. Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel. Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.
Advanced Analysis of Gene Expression Microarray Data
Author: Aidong Zhang
Publisher: World Scientific
ISBN: 9812566457
Category : Science
Languages : en
Pages : 358
Book Description
Focuses on the development and application of the latest advanced data mining, machine learning, and visualization techniques for the identification of interesting, significant, and novel patterns in gene expression microarray data. Describes cutting-edge methods for analyzing gene expression microarray data. Coverage includes gene-based analysis, sample-based analysis, pattern-based analysis and visualization tools.
Publisher: World Scientific
ISBN: 9812566457
Category : Science
Languages : en
Pages : 358
Book Description
Focuses on the development and application of the latest advanced data mining, machine learning, and visualization techniques for the identification of interesting, significant, and novel patterns in gene expression microarray data. Describes cutting-edge methods for analyzing gene expression microarray data. Coverage includes gene-based analysis, sample-based analysis, pattern-based analysis and visualization tools.
Statistical Analysis of Gene Expression Microarray Data
Author: Terry Speed
Publisher: CRC Press
ISBN: 0203011236
Category : Mathematics
Languages : en
Pages : 237
Book Description
Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies
Publisher: CRC Press
ISBN: 0203011236
Category : Mathematics
Languages : en
Pages : 237
Book Description
Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies
High-dimensional Data Analysis
Author: Tony Cai;Xiaotong Shen
Publisher:
ISBN: 9787894236326
Category :
Languages : en
Pages : 318
Book Description
Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.
Publisher:
ISBN: 9787894236326
Category :
Languages : en
Pages : 318
Book Description
Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.
Exploration and Analysis of DNA Microarray and Protein Array Data
Author: Dhammika Amaratunga
Publisher: John Wiley & Sons
ISBN: 0470317965
Category : Mathematics
Languages : en
Pages : 270
Book Description
A cutting-edge guide to the analysis of DNA microarray data Genomics is one of the major scientific revolutions of this century, and the use of microarrays to rapidly analyze numerous DNA samples has enabled scientists to make sense of mountains of genomic data through statistical analysis. Today, microarrays are being used in biomedical research to study such vital areas as a drug’s therapeutic value–or toxicity–and cancer-spreading patterns of gene activity. Exploration and Analysis of DNA Microarray and Protein Array Data answers the need for a comprehensive, cutting-edge overview of this important and emerging field. The authors, seasoned researchers with extensive experience in both industry and academia, effectively outline all phases of this revolutionary analytical technique, from the preprocessing to the analysis stage. Highlights of the text include: A review of basic molecular biology, followed by an introduction to microarrays and their preparation Chapters on processing scanned images and preprocessing microarray data Methods for identifying differentially expressed genes in comparative microarray experiments Discussions of gene and sample clustering and class prediction Extension of analysis methods to protein array data Numerous exercises for self-study as well as data sets and a useful collection of computational tools on the authors’ Web site make this important text a valuable resource for both students and professionals in the field.
Publisher: John Wiley & Sons
ISBN: 0470317965
Category : Mathematics
Languages : en
Pages : 270
Book Description
A cutting-edge guide to the analysis of DNA microarray data Genomics is one of the major scientific revolutions of this century, and the use of microarrays to rapidly analyze numerous DNA samples has enabled scientists to make sense of mountains of genomic data through statistical analysis. Today, microarrays are being used in biomedical research to study such vital areas as a drug’s therapeutic value–or toxicity–and cancer-spreading patterns of gene activity. Exploration and Analysis of DNA Microarray and Protein Array Data answers the need for a comprehensive, cutting-edge overview of this important and emerging field. The authors, seasoned researchers with extensive experience in both industry and academia, effectively outline all phases of this revolutionary analytical technique, from the preprocessing to the analysis stage. Highlights of the text include: A review of basic molecular biology, followed by an introduction to microarrays and their preparation Chapters on processing scanned images and preprocessing microarray data Methods for identifying differentially expressed genes in comparative microarray experiments Discussions of gene and sample clustering and class prediction Extension of analysis methods to protein array data Numerous exercises for self-study as well as data sets and a useful collection of computational tools on the authors’ Web site make this important text a valuable resource for both students and professionals in the field.
DNA Microarrays and Related Genomics Techniques
Author: David B. Allison
Publisher: CRC Press
ISBN: 1420028790
Category : Mathematics
Languages : en
Pages : 391
Book Description
Considered highly exotic tools as recently as the late 1990s, microarrays are now ubiquitous in biological research. Traditional statistical approaches to design and analysis were not developed to handle the high-dimensional, small sample problems posed by microarrays. In just a few short years the number of statistical papers providing approaches
Publisher: CRC Press
ISBN: 1420028790
Category : Mathematics
Languages : en
Pages : 391
Book Description
Considered highly exotic tools as recently as the late 1990s, microarrays are now ubiquitous in biological research. Traditional statistical approaches to design and analysis were not developed to handle the high-dimensional, small sample problems posed by microarrays. In just a few short years the number of statistical papers providing approaches
Exploration and Analysis of DNA Microarray and Other High-Dimensional Data
Author: Dhammika Amaratunga
Publisher: John Wiley & Sons
ISBN: 111836452X
Category : Mathematics
Languages : en
Pages : 320
Book Description
Praise for the First Edition “...extremely well written...a comprehensive and up-to-date overview of this important field.” – Journal of Environmental Quality Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition provides comprehensive coverage of recent advancements in microarray data analysis. A cutting-edge guide, the Second Edition demonstrates various methodologies for analyzing data in biomedical research and offers an overview of the modern techniques used in microarray technology to study patterns of gene activity. The new edition answers the need for an efficient outline of all phases of this revolutionary analytical technique, from preprocessing to the analysis stage. Utilizing research and experience from highly-qualified authors in fields of data analysis, Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition features: A new chapter on the interpretation of findings that includes a discussion of signatures and material on gene set analysis, including network analysis New topics of coverage including ABC clustering, biclustering, partial least squares, penalized methods, ensemble methods, and enriched ensemble methods Updated exercises to deepen knowledge of the presented material and provide readers with resources for further study The book is an ideal reference for scientists in biomedical and genomics research fields who analyze DNA microarrays and protein array data, as well as statisticians and bioinformatics practitioners. Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition is also a useful text for graduate-level courses on statistics, computational biology, and bioinformatics.
Publisher: John Wiley & Sons
ISBN: 111836452X
Category : Mathematics
Languages : en
Pages : 320
Book Description
Praise for the First Edition “...extremely well written...a comprehensive and up-to-date overview of this important field.” – Journal of Environmental Quality Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition provides comprehensive coverage of recent advancements in microarray data analysis. A cutting-edge guide, the Second Edition demonstrates various methodologies for analyzing data in biomedical research and offers an overview of the modern techniques used in microarray technology to study patterns of gene activity. The new edition answers the need for an efficient outline of all phases of this revolutionary analytical technique, from preprocessing to the analysis stage. Utilizing research and experience from highly-qualified authors in fields of data analysis, Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition features: A new chapter on the interpretation of findings that includes a discussion of signatures and material on gene set analysis, including network analysis New topics of coverage including ABC clustering, biclustering, partial least squares, penalized methods, ensemble methods, and enriched ensemble methods Updated exercises to deepen knowledge of the presented material and provide readers with resources for further study The book is an ideal reference for scientists in biomedical and genomics research fields who analyze DNA microarrays and protein array data, as well as statisticians and bioinformatics practitioners. Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition is also a useful text for graduate-level courses on statistics, computational biology, and bioinformatics.
Microarray Image and Data Analysis
Author: Luis Rueda
Publisher: CRC Press
ISBN: 1351831674
Category : Science
Languages : en
Pages : 571
Book Description
Microarray Image and Data Analysis: Theory and Practice is a compilation of the latest and greatest microarray image and data analysis methods from the multidisciplinary international research community. Delivering a detailed discussion of the biological aspects and applications of microarrays, the book: Describes the key stages of image processing, gridding, segmentation, compression, quantification, and normalization Features cutting-edge approaches to clustering, biclustering, and the reconstruction of regulatory networks Covers different types of microarrays such as DNA, protein, tissue, and low- and high-density oligonucleotide arrays Examines the current state of various microarray technologies, including their availability and affordability Explains how data generated by microarray experiments are analyzed to obtain meaningful biological conclusions An essential reference for academia and industry, Microarray Image and Data Analysis: Theory and Practice provides readers with valuable tools and techniques that extend to a wide range of biological studies and microarray platforms.
Publisher: CRC Press
ISBN: 1351831674
Category : Science
Languages : en
Pages : 571
Book Description
Microarray Image and Data Analysis: Theory and Practice is a compilation of the latest and greatest microarray image and data analysis methods from the multidisciplinary international research community. Delivering a detailed discussion of the biological aspects and applications of microarrays, the book: Describes the key stages of image processing, gridding, segmentation, compression, quantification, and normalization Features cutting-edge approaches to clustering, biclustering, and the reconstruction of regulatory networks Covers different types of microarrays such as DNA, protein, tissue, and low- and high-density oligonucleotide arrays Examines the current state of various microarray technologies, including their availability and affordability Explains how data generated by microarray experiments are analyzed to obtain meaningful biological conclusions An essential reference for academia and industry, Microarray Image and Data Analysis: Theory and Practice provides readers with valuable tools and techniques that extend to a wide range of biological studies and microarray platforms.