Author: R. T. Farrell
Publisher: World Scientific
ISBN: 9789812704443
Category : Mathematics
Languages : en
Pages : 516
Book Description
This book covers topics such as manifolds with positive scalar curvature, pseudo-isotopy spectrum and controlled theory, and reduction of the Novikov and Borel conjectures for aspherical complexes to aspherical manifolds.
High-dimensional Manifold Topology
Author: R. T. Farrell
Publisher: World Scientific
ISBN: 9789812704443
Category : Mathematics
Languages : en
Pages : 516
Book Description
This book covers topics such as manifolds with positive scalar curvature, pseudo-isotopy spectrum and controlled theory, and reduction of the Novikov and Borel conjectures for aspherical complexes to aspherical manifolds.
Publisher: World Scientific
ISBN: 9789812704443
Category : Mathematics
Languages : en
Pages : 516
Book Description
This book covers topics such as manifolds with positive scalar curvature, pseudo-isotopy spectrum and controlled theory, and reduction of the Novikov and Borel conjectures for aspherical complexes to aspherical manifolds.
High-dimensional Manifold Topology - Proceedings Of The School
Author: F Thomas Farrell
Publisher: World Scientific
ISBN: 9814487074
Category : Mathematics
Languages : en
Pages : 510
Book Description
Contents: A Foliated Squeezing Theorem for Geometric Modules (A Bartels et al.)Equivariant Cellular Homology and Its Applications (B Chorny)Remarks on a Conjecture of Gromov and Lawson (W Dwyer et al.)Chain Complex Invariants for Group Actions (L E Jones)The Ore Condition, Affiliated Operators, and the Lamplighter Group (P A Linnell et al.)The Surgery Exact Sequence Revisited (E K Pedersen)K-theory for Proper Smooth Actions of Totally Disconnected Groups (J Sauer)Geometric Chain Homotopy Equivalences between Novikov Complexes (D Schütz)and other papers Readership: Graduate students and researchers in geometry and topology. Keywords:High-Dimensional Manifold Topology;Operator Algebras;K-Theory;L-Theory;Foliated Control Theory
Publisher: World Scientific
ISBN: 9814487074
Category : Mathematics
Languages : en
Pages : 510
Book Description
Contents: A Foliated Squeezing Theorem for Geometric Modules (A Bartels et al.)Equivariant Cellular Homology and Its Applications (B Chorny)Remarks on a Conjecture of Gromov and Lawson (W Dwyer et al.)Chain Complex Invariants for Group Actions (L E Jones)The Ore Condition, Affiliated Operators, and the Lamplighter Group (P A Linnell et al.)The Surgery Exact Sequence Revisited (E K Pedersen)K-theory for Proper Smooth Actions of Totally Disconnected Groups (J Sauer)Geometric Chain Homotopy Equivalences between Novikov Complexes (D Schütz)and other papers Readership: Graduate students and researchers in geometry and topology. Keywords:High-Dimensional Manifold Topology;Operator Algebras;K-Theory;L-Theory;Foliated Control Theory
High-dimensional Manifold Topology
Author: Abdus Salam International Centre for Theoretical Physics
Publisher: World Scientific
ISBN: 9812382232
Category : Mathematics
Languages : en
Pages : 510
Book Description
Contents: A Foliated Squeezing Theorem for Geometric Modules (A Bartels et al.); Equivariant Cellular Homology and Its Applications (B Chorny); Remarks on a Conjecture of Gromov and Lawson (W Dwyer et al.); Chain Complex Invariants for Group Actions (L E Jones); The Ore Condition, Affiliated Operators, and the Lamplighter Group (P A Linnell et al.); The Surgery Exact Sequence Revisited (E K Pedersen); K-theory for Proper Smooth Actions of Totally Disconnected Groups (J Sauer); Geometric Chain Homotopy Equivalences between Novikov Complexes (D Schütz); and other papers;
Publisher: World Scientific
ISBN: 9812382232
Category : Mathematics
Languages : en
Pages : 510
Book Description
Contents: A Foliated Squeezing Theorem for Geometric Modules (A Bartels et al.); Equivariant Cellular Homology and Its Applications (B Chorny); Remarks on a Conjecture of Gromov and Lawson (W Dwyer et al.); Chain Complex Invariants for Group Actions (L E Jones); The Ore Condition, Affiliated Operators, and the Lamplighter Group (P A Linnell et al.); The Surgery Exact Sequence Revisited (E K Pedersen); K-theory for Proper Smooth Actions of Totally Disconnected Groups (J Sauer); Geometric Chain Homotopy Equivalences between Novikov Complexes (D Schütz); and other papers;
Algebraic and Geometric Surgery
Author: Andrew Ranicki
Publisher: Oxford University Press
ISBN: 9780198509240
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Publisher: Oxford University Press
ISBN: 9780198509240
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
An Introduction to Manifolds
Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426
Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426
Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
High-dimensional Knot Theory
Author: Andrew Ranicki
Publisher: Springer Science & Business Media
ISBN: 3662120119
Category : Mathematics
Languages : en
Pages : 669
Book Description
Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.
Publisher: Springer Science & Business Media
ISBN: 3662120119
Category : Mathematics
Languages : en
Pages : 669
Book Description
Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.
2019-20 MATRIX Annals
Author: Jan de Gier
Publisher: Springer Nature
ISBN: 3030624978
Category : Mathematics
Languages : en
Pages : 798
Book Description
MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
Publisher: Springer Nature
ISBN: 3030624978
Category : Mathematics
Languages : en
Pages : 798
Book Description
MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
Geometric Topology in Dimensions 2 and 3
Author: E.E. Moise
Publisher: Springer Science & Business Media
ISBN: 1461299063
Category : Mathematics
Languages : en
Pages : 272
Book Description
Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.
Publisher: Springer Science & Business Media
ISBN: 1461299063
Category : Mathematics
Languages : en
Pages : 272
Book Description
Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.
The Hauptvermutung Book
Author: A.A. Ranicki
Publisher: Springer Science & Business Media
ISBN: 9401733430
Category : Mathematics
Languages : en
Pages : 192
Book Description
The Hauptvermutung is the conjecture that any two triangulations of a poly hedron are combinatorially equivalent. The conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that furt her development of high-dimensional topology would lead to a verification in all dimensions. However, in 1961 Milnor constructed high-dimensional polyhedra with combinatorially inequivalent triangulations, disproving the Hauptvermutung in general. These polyhedra were not manifolds, leaving open the Hauptvermu tung for manifolds. The development of surgery theory led to the disproof of the high-dimensional manifold Hauptvermutung in the late 1960's. Unfortunately, the published record of the manifold Hauptvermutung has been incomplete, as was forcefully pointed out by Novikov in his lecture at the Browder 60th birthday conference held at Princeton in March 1994. This volume brings together the original 1967 papers of Casson and Sulli van, and the 1968/1972 'Princeton notes on the Hauptvermutung' of Armstrong, Rourke and Cooke, making this work physically accessible. These papers include several other results which have become part of the folklore but of which proofs have never been published. My own contribution is intended to serve as an intro duction to the Hauptvermutung, and also to give an account of some more recent developments in the area. In preparing the original papers for publication, only minimal changes of punctuation etc.
Publisher: Springer Science & Business Media
ISBN: 9401733430
Category : Mathematics
Languages : en
Pages : 192
Book Description
The Hauptvermutung is the conjecture that any two triangulations of a poly hedron are combinatorially equivalent. The conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that furt her development of high-dimensional topology would lead to a verification in all dimensions. However, in 1961 Milnor constructed high-dimensional polyhedra with combinatorially inequivalent triangulations, disproving the Hauptvermutung in general. These polyhedra were not manifolds, leaving open the Hauptvermu tung for manifolds. The development of surgery theory led to the disproof of the high-dimensional manifold Hauptvermutung in the late 1960's. Unfortunately, the published record of the manifold Hauptvermutung has been incomplete, as was forcefully pointed out by Novikov in his lecture at the Browder 60th birthday conference held at Princeton in March 1994. This volume brings together the original 1967 papers of Casson and Sulli van, and the 1968/1972 'Princeton notes on the Hauptvermutung' of Armstrong, Rourke and Cooke, making this work physically accessible. These papers include several other results which have become part of the folklore but of which proofs have never been published. My own contribution is intended to serve as an intro duction to the Hauptvermutung, and also to give an account of some more recent developments in the area. In preparing the original papers for publication, only minimal changes of punctuation etc.
How Surfaces Intersect in Space
Author: J. Scott Carter
Publisher: World Scientific
ISBN: 9789810220662
Category : Science
Languages : en
Pages : 344
Book Description
This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.
Publisher: World Scientific
ISBN: 9789810220662
Category : Science
Languages : en
Pages : 344
Book Description
This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.