Heat and Mass Transfer in Building Energy Performance Assessment PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Heat and Mass Transfer in Building Energy Performance Assessment PDF full book. Access full book title Heat and Mass Transfer in Building Energy Performance Assessment by Robert Černý. Download full books in PDF and EPUB format.

Heat and Mass Transfer in Building Energy Performance Assessment

Heat and Mass Transfer in Building Energy Performance Assessment PDF Author: Robert Černý
Publisher: MDPI
ISBN: 303921926X
Category : Technology & Engineering
Languages : en
Pages : 122

Book Description
The building industry is influenced by many factors and trends reflecting the current situation and developments in social, economic, technical, and scientific fields. One of the most important trends seeks to minimize the energy demand. This can be achieved by promoting the construction of buildings with better thermal insulating capabilities of their envelopes and better efficiency in heating, ventilation, and air conditioning systems. Any credible assessment of building energy performance includes the identification and simulation of heat and mass transfer phenomena in both the building envelope and the interior of the building. As the interaction between design elements, climate change, user behavior, heating effectiveness, ventilation, air conditioning systems, and lighting is not straightforward, the assessment procedure can present a complex and challenging task. The simulations should then involve all factors affecting the energy performance of the building in questions. However, the appropriate choice of physical model of heat and mass transfer for different building elements is not the only factor affecting the output of building energy simulations. The accuracy of the material parameters applied in the models as input data is another potential source of uncertainty. For instance, neglecting the dependence of hygric and thermal parameters on moisture content may affect the energy assessment in a significant way. Boundary conditions in the form of weather data sets represent yet another crucial factor determining the uncertainty of the outputs. In light of recent trends in climate change, this topic is vitally important. This Special Issue aims at providing recent developments in laboratory analyses, computational modeling, and in situ measurements related to the assessment of building energy performance based on the proper identification of heat and mass transfer processes in building structures. Potential topics include but are not limited to the following: -Development, calibration, and validation of advanced mathematical models for the description of heat and mass transfer in building materials and structures -Computational modeling of heat and mass transfer in building materials and structures aimed at energy performance assessment Boundary conditions for building energy performance simulations in light of climate change trends -Advanced experimental techniques for the determination of heat and mass transport and the storage properties of building materials -On site monitoring and verification of building energy performance -Research and development of new materials with high potential to improve the energy performance of buildings

Heat and Mass Transfer in Building Energy Performance Assessment

Heat and Mass Transfer in Building Energy Performance Assessment PDF Author: Robert Černý
Publisher: MDPI
ISBN: 303921926X
Category : Technology & Engineering
Languages : en
Pages : 122

Book Description
The building industry is influenced by many factors and trends reflecting the current situation and developments in social, economic, technical, and scientific fields. One of the most important trends seeks to minimize the energy demand. This can be achieved by promoting the construction of buildings with better thermal insulating capabilities of their envelopes and better efficiency in heating, ventilation, and air conditioning systems. Any credible assessment of building energy performance includes the identification and simulation of heat and mass transfer phenomena in both the building envelope and the interior of the building. As the interaction between design elements, climate change, user behavior, heating effectiveness, ventilation, air conditioning systems, and lighting is not straightforward, the assessment procedure can present a complex and challenging task. The simulations should then involve all factors affecting the energy performance of the building in questions. However, the appropriate choice of physical model of heat and mass transfer for different building elements is not the only factor affecting the output of building energy simulations. The accuracy of the material parameters applied in the models as input data is another potential source of uncertainty. For instance, neglecting the dependence of hygric and thermal parameters on moisture content may affect the energy assessment in a significant way. Boundary conditions in the form of weather data sets represent yet another crucial factor determining the uncertainty of the outputs. In light of recent trends in climate change, this topic is vitally important. This Special Issue aims at providing recent developments in laboratory analyses, computational modeling, and in situ measurements related to the assessment of building energy performance based on the proper identification of heat and mass transfer processes in building structures. Potential topics include but are not limited to the following: -Development, calibration, and validation of advanced mathematical models for the description of heat and mass transfer in building materials and structures -Computational modeling of heat and mass transfer in building materials and structures aimed at energy performance assessment Boundary conditions for building energy performance simulations in light of climate change trends -Advanced experimental techniques for the determination of heat and mass transport and the storage properties of building materials -On site monitoring and verification of building energy performance -Research and development of new materials with high potential to improve the energy performance of buildings

Heat and Mass Transfer in Building Services Design

Heat and Mass Transfer in Building Services Design PDF Author: Keith Moss
Publisher: Routledge
ISBN: 1135811741
Category : Architecture
Languages : en
Pages : 247

Book Description
Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *underpins and extends the themes of the author's previous books: Heating and Water Services Design in Buildings; Energy Management and Operational Costs in Buildings Heat and Mass Transfer in Building Services Design combines theory with practical application for building services professional and students. It will also be beneficial to technicians and undergraduate students on courses in construction and mechanical engineering.

Heat and Mass Transfer in Building Energy Performance Assessment

Heat and Mass Transfer in Building Energy Performance Assessment PDF Author: Robert ?erný
Publisher:
ISBN: 9783039219278
Category : Engineering (General). Civil engineering (General)
Languages : en
Pages : 122

Book Description
The building industry is influenced by many factors and trends reflecting the current situation and developments in social, economic, technical, and scientific fields. One of the most important trends seeks to minimize the energy demand. This can be achieved by promoting the construction of buildings with better thermal insulating capabilities of their envelopes and better efficiency in heating, ventilation, and air conditioning systems. Any credible assessment of building energy performance includes the identification and simulation of heat and mass transfer phenomena in both the building envelope and the interior of the building. As the interaction between design elements, climate change, user behavior, heating effectiveness, ventilation, air conditioning systems, and lighting is not straightforward, the assessment procedure can present a complex and challenging task. The simulations should then involve all factors affecting the energy performance of the building in questions. However, the appropriate choice of physical model of heat and mass transfer for different building elements is not the only factor affecting the output of building energy simulations. The accuracy of the material parameters applied in the models as input data is another potential source of uncertainty. For instance, neglecting the dependence of hygric and thermal parameters on moisture content may affect the energy assessment in a significant way. Boundary conditions in the form of weather data sets represent yet another crucial factor determining the uncertainty of the outputs. In light of recent trends in climate change, this topic is vitally important. This Special Issue aims at providing recent developments in laboratory analyses, computational modeling, and in situ measurements related to the assessment of building energy performance based on the proper identification of heat and mass transfer processes in building structures.

Building Performance Analysis

Building Performance Analysis PDF Author: Pieter de Wilde
Publisher: John Wiley & Sons
ISBN: 1119341922
Category : Technology & Engineering
Languages : en
Pages : 628

Book Description
Explores and brings together the existent body of knowledge on building performance analysis Shortlisted in the CIBSE 2020 Building Performance Awards Building performance is an important yet surprisingly complex concept. This book presents a comprehensive and systematic overview of the subject. It provides a working definition of building performance, and an in-depth discussion of the role building performance plays throughout the building life cycle. The book also explores the perspectives of various stakeholders, the functions of buildings, performance requirements, performance quantification (both predicted and measured), criteria for success, and the challenges of using performance analysis in practice. Building Performance Analysis starts by introducing the subject of building performance: its key terms, definitions, history, and challenges. It then develops a theoretical foundation for the subject, explores the complexity of performance assessment, and the way that performance analysis impacts on actual buildings. In doing so, it attempts to answer the following questions: What is building performance? How can building performance be measured and analyzed? How does the analysis of building performance guide the improvement of buildings? And what can the building domain learn from the way performance is handled in other disciplines? Assembles the current body of knowledge on building performance analysis in one unique resource Offers deep insights into the complexity of using building performance analysis throughout the entire building life cycle, including design, operation and management Contributes an emergent theory of building performance and its analysis Building Performance Analysis will appeal to the building science community, both from industry and academia. It specifically targets advanced students in architectural engineering, building services design, building performance simulation and similar fields who hold an interest in ensuring that buildings meet the needs of their stakeholders.

Exergy Analysis and Thermoeconomics of Buildings

Exergy Analysis and Thermoeconomics of Buildings PDF Author: Jose M Sala-Lizarraga
Publisher: Butterworth-Heinemann
ISBN: 0128176121
Category : Technology & Engineering
Languages : en
Pages : 1116

Book Description
Quantifying exergy losses in the energy supply system of buildings reveals the potential for energy improvement, which cannot be discovered using conventional energy analysis. Thermoeconomics combines economic and thermodynamic analysis by applying the concept of cost (an economic concept) to exergy, as exergy is a thermodynamic property fit for this purpose, in that it combines the quantity of energy with its quality factor. Exergy Analysis and Thermoeconomics of Buildings applies exergy analysis methods and thermoeconomics to the built environment. The mechanisms of heat transfer throughout the envelope of buildings are analyzed from an exergy perspective and then to the building thermal installations, analyzing the different components, such as condensing boilers, absorption refrigerators, microcogeneration plants, etc., including solar installations and finally the thermal facilities as a whole. A detailed analysis of the cost formation process is presented, which has its physical roots firmly planted in the second law of thermodynamics. The basic principles and the rules of cost allocation, in energy units (exergy cost), in monetary units (exergoeconomic cost), and in CO2 emissions (exergoenvironmental cost), based on the so-called Exergy Cost Theory are presented and applied to thermal installations of buildings. Clear and rigorous in its exposition, Exergy Analysis and Thermoeconomics of Buildings discusses exergy analysis and thermoeconomics and the role they could play in the analysis and design of building components, either the envelope or the thermal facilities, as well as the diagnosis of thermal installations. This book moves progressively from introducing the basic concepts to applying them. Exergy Analysis and Thermoeconomics of Buildings provides examples of specific cases throughout this book. These cases include real data, so that the results obtained are useful to interpret the inefficiencies and losses that truly occur in actual installations; hence, the assessment of their effects encourages the manner to improve efficiency. - Applies exergy analysis methods for the installation of building thermal facilities equipment components, including pipes, valves, heat exchangers, boilers and heat pumps - Helps readers determine the operational costs of heating and cooling building systems - Includes exergy analysis methods that are devoted to absorption refrigerators, adsorption cooling systems, basic air conditioning processes, ventilation systems and solar systems, either thermal and PV - Discusses the direct application of exergy analysis concepts, including examples of buildings with typical heating, DHW and air conditioning installations

Disrupting Buildings

Disrupting Buildings PDF Author: Theo Lynn
Publisher: Springer Nature
ISBN: 3031323092
Category :
Languages : en
Pages : 187

Book Description


Thermal Insulation and Radiation Control Technologies for Buildings

Thermal Insulation and Radiation Control Technologies for Buildings PDF Author: Jan Kośny
Publisher: Springer Nature
ISBN: 3030986934
Category : Architecture
Languages : en
Pages : 487

Book Description
This book offers a unique treatment of building insulating products and the integration of these products with building components. This book was written for all those involved in building design, specification, construction, and commissioning, providing them with an understanding of and appreciation for the wide variety of thermal insulation products and technologies available for use in all types of buildings. The book proceeds from basic definitions and discussion of heat-transfer topics and thermal insulation concepts, to the design and use of these products. The impact of thermal insulation on dynamic building performance, including factors other than heating and cooling, is also discussed. The book does not require an advanced mathematical background. The authors provide sufficient information to provide a qualitative understanding, with more mathematical sections included for those interested in modeling and analysis. The basic physics associated with heat transfer in buildings are presented, along with the steady-state and transient analysis techniques needed for the effective implementation of thermal insulation and assemblies. Modern building design involves the integration of comfort, safety, economics, durability and cost considerations, all of which impact the selection and use of thermal insulation materials in buildings. In addition to theoretical explanations of the underlying science, the book details the properties and application of new thermal insulation materials, including vacuum panels, gas-filled panels, aerogels, phase-change materials, and radiation control technologies. Given its scope, the book will be of interest to researchers and building engineers wishing to understand the latest technologies and materials available, so as to achieve reduced energy consumption in commercial and residential buildings.

Office Buildings

Office Buildings PDF Author: Pranab Kumar Nag
Publisher: Springer
ISBN: 9811325774
Category : Technology & Engineering
Languages : en
Pages : 536

Book Description
This book brings together concepts from the building, environmental, behavioural and health sciences to provide an interdisciplinary understanding of office and workplace design. Today, with changes in the world of work and the relentless surge in technology, offices have emerged as the repositories of organizational symbolism, denoted by the spatial design of offices, physical settings and the built environment (architecture, urban locale). Drawing on Euclidian geometry that quantifies space as the distance between two or more points, a body of knowledge on office buildings, the concept of office and office space, and the interrelationships of spatial and behavioural attributes in office design are elucidated. Building and office work-related illnesses, namely sick building syndrome and ailments arising from the indoor environment, and the menace of musculoskeletal disorders are the alarming manifestations that critically affect employee satisfaction, morale and work outcomes. With a focus on office ergonomics, the book brings the discussion on the fundamentals of work design, with emphasis on computer workstation users. Strategic guidance of lighting systems and visual performance in workplaces are directed for better application of ergonomics and improvement in office indoor environment. It discusses the profiles of bioclimatic, indoor air quality, ventilation intervention, lighting and acoustic characteristics in office buildings. Emphasis has been given to the energy performance of buildings, and contemporary perspectives of building sustainability, such as green office building assessment schemes, and national and international building-related standards and codes. Intended for students and professionals from ergonomics, architecture, interior design, as well as construction engineers, health care professionals, and office planners, the book brings a unified overview of the health, safety and environment issues associated with the design of office buildings.

Innovations in Energy Efficient Construction Through Sustainable Materials

Innovations in Energy Efficient Construction Through Sustainable Materials PDF Author: González-Lezcano, Roberto Alonso
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 536

Book Description
The construction industry, a cornerstone of modern development, must meet the growing demand for new buildings while minimizing environmental impact. As global populations rise and living standards improve, the need for sustainable building practices has never been more apparent. Traditional construction methods and materials contribute significantly to carbon emissions, resource depletion, and biodiversity loss. Addressing these issues requires innovative solutions that balance development needs with environmental stewardship. Innovations in Energy Efficient Construction Through Sustainable Materials offers a comprehensive response to this pressing problem. The book explores pioneering approaches to building design and construction, focusing on the use of alternative, low-carbon materials and advanced technologies. It provides an in-depth analysis of current and future trends in sustainable construction, covering topics such as recycling waste materials, utilizing biodegradable resources, and implementing energy-efficient designs. By presenting a variety of research fields and practical applications, the book bridges the gap between theoretical concepts and real-world solutions, making it an essential resource for industry professionals, researchers, and advanced students.

Proceedings of the 5th International Conference on Building Energy and Environment

Proceedings of the 5th International Conference on Building Energy and Environment PDF Author: Liangzhu Leon Wang
Publisher: Springer Nature
ISBN: 9811998221
Category : Technology & Engineering
Languages : en
Pages : 2933

Book Description
This book is a compilation of selected papers from the 5th International Conference on Building Energy and Environment (COBEE2022), held in Montreal, Canada, in July 2022. The work focuses on the most recent technologies and knowledge of building energy and the environment, including health, energy, urban microclimate, smart cities, safety, etc. The contents make valuable contributions to academic researchers, engineers in the industry, and regulators of buildings. As well, readers encounter new ideas for achieving healthy, comfortable, energy-efficient, resilient, and safe buildings.