Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media PDF full book. Access full book title Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media by Shaomin Xiong. Download full books in PDF and EPUB format.

Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media

Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media PDF Author: Shaomin Xiong
Publisher:
ISBN:
Category :
Languages : en
Pages : 184

Book Description


Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media

Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media PDF Author: Shaomin Xiong
Publisher:
ISBN:
Category :
Languages : en
Pages : 184

Book Description


A Study of the Head Disk Interface in Heat Assisted Magnetic Recording - Energy and Mass Transfer in Nanoscale

A Study of the Head Disk Interface in Heat Assisted Magnetic Recording - Energy and Mass Transfer in Nanoscale PDF Author: Haoyu Wu
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Book Description
The hard disk drive (HDD) is still the dominant technology in digital data storage due to its cost efficiency and long term reliability compared with other forms of data storage devices. The HDDs are widely used in personal computing, gaming devices, cloud services, data centers, surveillance, etc. Because the superparamagnetic limit of perpendicular magnetic recording (PMR) has been reached at the data density of about 1 Tb/in^2 , heat assisted magnetic recording (HAMR) is being pursued and is expected to help increase the areal density to over 10 Tb/in^2 in HDDs in order to fulfill the future worldwide data storage demands. In HAMR, the magnetic media is heated locally (~50nm x 50nm) and momentarily (~10ns) to its Curie temperature (~750K) by a laser beam. The laser beam is generated by a laser diode (LD) and focused by a near field transducer (NFT). But the energy and mass transfer at high temperature from the laser heating can cause potential reliability issues. The design temperature of the NFT is much lower than the media’s Curie temperature. However, the distance between the NFT and the media is less than 10nm. As a result, the heat can flow back from the media to the NFT, which is called the back-heating effect. This can cause undesired additional temperature increase on the NFT, shortening its lifetime. Additionally, depletion, evaporation and degradation can happen on the lubricant and the carbon overcoat (COC) layer of the media. The material can transfer from the media to the head at high temperature and cause solid contamination on the head, adversely affecting its reliability. Since the laser heating in HAMR happens at nanoscale spatially and temporally, it is difficult to measure experimentally. In this dissertation, a comprehensive experimental stage, called the Computer Mechanics Laboratory (CML)-HAMR stage, was built to study different aspects of HAMR systems, including the heat and mass transfer in the head-disk interface during laser heating. The CML-HAMR stage includes an optical module, a spinstand module and a signal generation/acquisition module. And it can emulate the HAMR scenario. The head’s temperature was measured during the laser heating using the stage and heads with an embedded contact sensor (ECS). It was estimated, based on a linear extrapolation, that the ECS temperature rise is 139K, 132K, 127K and 122K when the disk is heated to the Curie temperature (~750K) and the head-disk clearance is 0nm, 1nm, 2nm and 3nm, respectively. The heating effect of the ECS was also studied and a related heat transfer experiment was performed. The normalized ECS self heating temperature rise, an indicator of the heat transfer in the head-disk interface (HDI), was measured. It was concluded that the heat transfer coefficient across the HDI strongly depends on the width of the gap size, especially when the gap size is smaller than 1nm. The head disk interaction during the laser heating was studied using a waveguide head, i.e., a HAMR head without the NFT. It showed that the laser heating can cause head surface protrusion. This lowers the fly-height (FH) and results in early touchdown (TD). It was shown that the ratio of touchdown power (TDP) change to the laser current is 0.3mW/mA. The dynamics of the head also changes during the laser heating. It was found that the magnitude of the 1st-pitch-mode vibration on the head increases over time both in short term and long term. The accumulation of material transferred to the head was also investigated. It was found that the solid contamination caused by the laser heating forms in the center of the waveguide. The round-shaped contamination formed on the head surface after laser heating. Finally the disk lubricant reflow after laser heating was studied. In the experiment, a beam of free space laser shines on the rotating disk at different laser powers, disk rotating speeds and repetitions. Then the disk was examined by an optical surface analyzer (OSA). It was found that 80% of the displaced lubricant recovers within 20 minutes. A simulation was also performed. The experiments and the simulation are in good agreement.

Study of Dynamics and Nanoscale Heat Transfer of Head Disk Interface in Hard Disk Drives

Study of Dynamics and Nanoscale Heat Transfer of Head Disk Interface in Hard Disk Drives PDF Author: Yuan Ma
Publisher:
ISBN:
Category :
Languages : en
Pages : 104

Book Description
Since its introduction in 1956, hard disk drives have become one of the dominant products in the industry of data storage. The capacity of the hard disk drives must keep evolving to store the exploding data generated in the era of big data. This demand pushes the development of technologies including heat assisted magnetic recording (HAMR), microwave assisted magnetic recording (MAMR) and bit-patterned media (BPM) to increase the areal density beyond 1Tb/in2. In the development of these technologies, it is essential to have a clear understanding of the dynamics and nanoscale heat transfer behavior across the head-disk interface. In this dissertation, dynamics and nano-scale heat transfer in the head disk interface are discussed. Experimental study of nano-scale heat transfer is conducted with the specifically designed static touchdown experiment. Simulation strategy that incorporates the wave-based phonon conduction theory was also developed. In the flying condition, correlation between the temperature and head disk spacing was found at both passive flying stage and modulation stage. When the flying height increases due to either disk surface microwaviness or contact induced modulation, head temperature will increase, with a slight time delay, indicating the existence of a cooling effect as the head approaches the disk. The static touchdown experiment, which decouples the complicated air bearing from the nano-scale interface was further designed and performed. The heat transfer behavior across a closing nano-scale gap between head and disk was observed and measured. Experimental and simulation results showed general agreement with the theoretical predictions of the wave based theory for radiation and phonon conduction. The effect of different factors including humidity, air pressure, lubricant layer and disk substrate in the static touchdown experiment were also studied separately. Furthermore, the dynamics of HAMR condition was studied with waveguide heads. The laser induced protrusion was found to be around 1~2 nm in height. The findings of this dissertation could be applied to future HAMR head/media design, and the static touchdown experiment could be potentially improved to be a new approach to measure material conduction coefficient and emissivity with high special resolution.

Tribological Performance of the Head-Disk Interface in Perpendicular Magnetic Recording and Heat-Assisted Magnetic Recording

Tribological Performance of the Head-Disk Interface in Perpendicular Magnetic Recording and Heat-Assisted Magnetic Recording PDF Author: Tan Duy Trinh
Publisher:
ISBN:
Category :
Languages : en
Pages : 185

Book Description
International Data Corporation (IDC) estimates that hard disk drives will still be the main storage device for storing digital data in the next 10 years, holding approximately 80% of the data inside data centers. To increase the areal density of hard disk drives, the mechanical spacing between the head and disk surface has decreased to approximately 1nm. At such a small spacing, tribology of the head-disk interface, including head-disk contacts, wear, material buildup, and lubricant transfer, become increasingly more important for the reliability of hard disk drives. In addition to small spacing, heat-assisted magnetic recording (HAMR) technology aims to deliver higher areal density recording by heating up the media surface to a few hundred Celsius degrees, facilitating the writing process. High temperature at the head and disk surfaces cause serious reliability issues for the head-disk interface (HDI). Therefore, understanding of the main factors that affect the reliability of the head-disk interface is an essential task. In this dissertation, the effect of bias voltage and helium environment on the tribological performance of the head-disk interface is investigated. To do this, we first simulated the flying characteristics of the slider as a function of bias voltage in air and helium environment. Thereafter, an experimental study was performed using custom built tester located inside a sealed environmental chamber to study the effect of air and helium on wear and lubricant redistribution at the head-disk interface during load-unload. We investigated the effect of bias voltage and relative humidity on wear, material buildup, and nano-corrosion on the slider surface. Finally, we have studied laser current and laser optical power in heat-assisted magnetic recording as a function of operating radius, head-disk clearance, media design, and their effects on the life-time of the head-disk interface. The results of this dissertation provide guidance for the effect of bias voltage, relative humidity, and helium environment on wear, material buildup, corrosion, and lubricant transfer at the head-disk interface. More importantly, our experimental study in heat-assisted magnetic recording leads to a better understanding of the main factors that cause failure of the HAMR head-disk interface. Our results are important for the improvement of the tribological performance and reliability of perpendicular magnetic recording (PMR) and heat-assisted magnetic recording (HAMR) head-disk interface.

Meeting Abstracts

Meeting Abstracts PDF Author: Electrochemical Society
Publisher:
ISBN:
Category : Electrochemistry
Languages : en
Pages : 1020

Book Description


Ultra-High-Density Magnetic Recording

Ultra-High-Density Magnetic Recording PDF Author: Gaspare Varvaro
Publisher: CRC Press
ISBN: 9814669598
Category : Science
Languages : en
Pages : 528

Book Description
Today magnetic recording is still the leading technology for mass data storage. Its dominant role is being reinforced by the success of cloud computing, which requires storing and managing huge amounts of data on a multitude of servers. Nonetheless, the hard-disk storage industry is presently at a crossroads as the current magnetic recording techno

The Physics of Ultra-High-Density Magnetic Recording

The Physics of Ultra-High-Density Magnetic Recording PDF Author: M.L. Plumer
Publisher: Springer Science & Business Media
ISBN: 364256657X
Category : Science
Languages : en
Pages : 364

Book Description
Application-oriented book on magnetic recording, focussing on the underlying physical mechanisms that play crucial roles in medium and transducer development for high areal density disk drives.

Experimental Study of Head-disk Interface Dynamics Under the Condition of Near-contact Recording for Magnetic Hard Disk Drives

Experimental Study of Head-disk Interface Dynamics Under the Condition of Near-contact Recording for Magnetic Hard Disk Drives PDF Author: Mark Joseph Donovan
Publisher:
ISBN:
Category : Data disk drives
Languages : en
Pages : 300

Book Description


Thermal Fly-height Control Slider Dynamics and Slider-Lubricant Interactions in Hard Disk Drives

Thermal Fly-height Control Slider Dynamics and Slider-Lubricant Interactions in Hard Disk Drives PDF Author: Sripathi Vangipuram Canchi
Publisher:
ISBN:
Category :
Languages : en
Pages : 304

Book Description
The storage industry's density target of 10 Tb/sq.in. in hard disk drives within the next decade requires a significant change in head-disk interface (HDI) architecture, and it likely involves a combination of new technologies such as Heat Assisted Magnetic Recording and Bit Patterned Media Recording to mention a few. Independent of the actual recording technology, it is necessary to reduce the magnetic spacing to within 2nm, which implies a physical spacing as little as 0.25nm at the read-write transducer location. At such a small spacing intermittent contact between the slider and the lubricant layer or hard overcoat surface on the disk becomes inevitable. A continuous lubricant-contact HDI may in fact be necessary to meet future magnetic spacing needs. While the new recording technologies impose a significantly tighter budget on the slider dynamics in all three directions (vertical, down-track and off-track), the contacting HDI must be reliable, ensuring no degradation of lubricant or disk overcoats even after prolonged operation. The current slider technology uses Thermal Fly-height Control (TFC) to bring the read-write portion of the slider closer to the disk by resistive heating induced thermal deformation/protrusion. While subnanometer level clearance can be achieved using the TFC, slider stability and HDI reliability at very small spacing remains to be understood. In order to further reduce the magnetic spacing using the TFC architecture, a recording strategy with a small portion of the thermal protrusion in intermittent or continuous contact with the lubricant layer of the disk has been proposed, but there is limited theoretical and experimental work to verify the feasibility of this technique. The focus of this work is to advance the understanding of TFC slider dynamics and slider-lubricant interactions at a HDI with contact through experiments and modeling. Slider-lubricant contact is experimentally established by carefully controlling the TFC heater power, and the three dimensional slider dynamics under lubricant-contact is investigated. The degree of slider-lubricant contact is shown to influence the slider's vibration modes. A simple two degree of freedom model that accounts for nonlinearities at the HDI through quadratic and cubic approximations is used to analytically investigate the interesting features of this problem. It is shown that the thermal protrusion induced by the heater power can cause the system modes to couple unfavorably for certain heater power ranges, and this condition can manifest itself as large amplitude slider vibrations. Experiments are conducted to understand the interplay between slider dynamics and disk lubricant evolution under the thermal protrusion for contact and near contact conditions. Slider dynamics and lubricant rippling are shown to be well correlated and a mechanism of lubricant transfer from the slider to the disk at the onset of contact is demonstrated. Parametric investigations are conducted to understand the effect of lubricant type and thickness on lubricant distribution, lubricant depletion and subsequent lubricant recovery behavior at a contacting HDI.

The Role of Heat Assisted Magnetic Recording in Future Hard Disk Drive Applications

The Role of Heat Assisted Magnetic Recording in Future Hard Disk Drive Applications PDF Author: Diego A. Méndez de la Luz
Publisher:
ISBN:
Category :
Languages : en
Pages : 140

Book Description
(Cont.) portable consumer electronics, such as PDAs, cell phones, music players, digital cameras, etc. make a relatively modest but fast growing market for ultrahigh areal density HAMR-based HDDs. HAMR-based HDD for portable applications could very well be a disruptive technology in the magnetic recording industry. Companies that intend to profit from this technology need to invest on its development and must try to be first-to-volume production to benefit from economies of scale and to build the necessary expertise that could give them leadership roles in future magnetic recording.