Author: Dorina Mitrea
Publisher: Springer Science & Business Media
ISBN: 1461482089
Category : Mathematics
Languages : en
Pages : 475
Book Description
The theory of distributions constitutes an essential tool in the study of partial differential equations. This textbook would offer, in a concise, largely self-contained form, a rapid introduction to the theory of distributions and its applications to partial differential equations, including computing fundamental solutions for the most basic differential operators: the Laplace, heat, wave, Lam\'e and Schrodinger operators.
Distributions, Partial Differential Equations, and Harmonic Analysis
Author: Dorina Mitrea
Publisher: Springer Science & Business Media
ISBN: 1461482089
Category : Mathematics
Languages : en
Pages : 475
Book Description
The theory of distributions constitutes an essential tool in the study of partial differential equations. This textbook would offer, in a concise, largely self-contained form, a rapid introduction to the theory of distributions and its applications to partial differential equations, including computing fundamental solutions for the most basic differential operators: the Laplace, heat, wave, Lam\'e and Schrodinger operators.
Publisher: Springer Science & Business Media
ISBN: 1461482089
Category : Mathematics
Languages : en
Pages : 475
Book Description
The theory of distributions constitutes an essential tool in the study of partial differential equations. This textbook would offer, in a concise, largely self-contained form, a rapid introduction to the theory of distributions and its applications to partial differential equations, including computing fundamental solutions for the most basic differential operators: the Laplace, heat, wave, Lam\'e and Schrodinger operators.
Fourier Analysis and Nonlinear Partial Differential Equations
Author: Hajer Bahouri
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 530
Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 530
Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Harmonic Analysis, Partial Differential Equations and Applications
Author: Sagun Chanillo
Publisher: Birkhäuser
ISBN: 3319527428
Category : Mathematics
Languages : en
Pages : 319
Book Description
This collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.
Publisher: Birkhäuser
ISBN: 3319527428
Category : Mathematics
Languages : en
Pages : 319
Book Description
This collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.
Harmonic Analysis and Partial Differential Equations
Author: Alberto P. Calderón
Publisher: University of Chicago Press
ISBN: 9780226104560
Category : Mathematics
Languages : en
Pages : 388
Book Description
Alberto P. Calderón (1920-1998) was one of this century's leading mathematical analysts. His contributions, characterized by great originality and depth, have changed the way researchers approach and think about everything from harmonic analysis to partial differential equations and from signal processing to tomography. In addition, he helped define the "Chicago school" of analysis, which remains influential to this day. In 1996, more than 300 mathematicians from around the world gathered in Chicago for a conference on harmonic analysis and partial differential equations held in Calderón's honor. This volume originated in papers given there and presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest scholars working in these areas. An important addition to the literature, this book is essential reading for researchers in these and other related fields.
Publisher: University of Chicago Press
ISBN: 9780226104560
Category : Mathematics
Languages : en
Pages : 388
Book Description
Alberto P. Calderón (1920-1998) was one of this century's leading mathematical analysts. His contributions, characterized by great originality and depth, have changed the way researchers approach and think about everything from harmonic analysis to partial differential equations and from signal processing to tomography. In addition, he helped define the "Chicago school" of analysis, which remains influential to this day. In 1996, more than 300 mathematicians from around the world gathered in Chicago for a conference on harmonic analysis and partial differential equations held in Calderón's honor. This volume originated in papers given there and presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest scholars working in these areas. An important addition to the literature, this book is essential reading for researchers in these and other related fields.
Partial Differential Equations I
Author: Michael E. Taylor
Publisher: Springer Science & Business Media
ISBN: 144197055X
Category : Mathematics
Languages : en
Pages : 673
Book Description
The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.
Publisher: Springer Science & Business Media
ISBN: 144197055X
Category : Mathematics
Languages : en
Pages : 673
Book Description
The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.
Geometric Mechanics on Riemannian Manifolds
Author: Ovidiu Calin
Publisher: Springer Science & Business Media
ISBN: 0817644210
Category : Mathematics
Languages : en
Pages : 285
Book Description
* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics
Publisher: Springer Science & Business Media
ISBN: 0817644210
Category : Mathematics
Languages : en
Pages : 285
Book Description
* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics
Partial Differential Equations III
Author: Michael E. Taylor
Publisher: Springer Science & Business Media
ISBN: 1441970495
Category : Mathematics
Languages : en
Pages : 734
Book Description
The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis
Publisher: Springer Science & Business Media
ISBN: 1441970495
Category : Mathematics
Languages : en
Pages : 734
Book Description
The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis
Partial Differential Equations and Functional Analysis
Author: Erik Koelink
Publisher: Springer Science & Business Media
ISBN: 3764376015
Category : Mathematics
Languages : en
Pages : 294
Book Description
Capturing the state of the art of the interplay between partial differential equations, functional analysis, maximal regularity, and probability theory, this volume was initiated at the Delft conference on the occasion of the retirement of Philippe Clément. It will be of interest to researchers in PDEs and functional analysis.
Publisher: Springer Science & Business Media
ISBN: 3764376015
Category : Mathematics
Languages : en
Pages : 294
Book Description
Capturing the state of the art of the interplay between partial differential equations, functional analysis, maximal regularity, and probability theory, this volume was initiated at the Delft conference on the occasion of the retirement of Philippe Clément. It will be of interest to researchers in PDEs and functional analysis.
Applied Complex Analysis with Partial Differential Equations
Author: Nakhlé H. Asmar
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 904
Book Description
This reader-friendly book presents traditional material using a modern approach that invites the use of technology. Abundant exercises, examples, and graphics make it a comprehensive and visually appealing resource. Chapter topics include complex numbers and functions, analytic functions, complex integration, complex series, residues: applications and theory, conformal mapping, partial differential equations: methods and applications, transform methods, and partial differential equations in polar and spherical coordinates. For engineers and physicists in need of a quick reference tool.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 904
Book Description
This reader-friendly book presents traditional material using a modern approach that invites the use of technology. Abundant exercises, examples, and graphics make it a comprehensive and visually appealing resource. Chapter topics include complex numbers and functions, analytic functions, complex integration, complex series, residues: applications and theory, conformal mapping, partial differential equations: methods and applications, transform methods, and partial differential equations in polar and spherical coordinates. For engineers and physicists in need of a quick reference tool.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.