Discrete Harmonic Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Discrete Harmonic Analysis PDF full book. Access full book title Discrete Harmonic Analysis by Tullio Ceccherini-Silberstein. Download full books in PDF and EPUB format.

Discrete Harmonic Analysis

Discrete Harmonic Analysis PDF Author: Tullio Ceccherini-Silberstein
Publisher: Cambridge University Press
ISBN: 1107182336
Category : Mathematics
Languages : en
Pages : 589

Book Description
A self-contained introduction to discrete harmonic analysis with an emphasis on the Discrete and Fast Fourier Transforms.

Discrete Harmonic Analysis

Discrete Harmonic Analysis PDF Author: Tullio Ceccherini-Silberstein
Publisher: Cambridge University Press
ISBN: 1107182336
Category : Mathematics
Languages : en
Pages : 589

Book Description
A self-contained introduction to discrete harmonic analysis with an emphasis on the Discrete and Fast Fourier Transforms.

Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis

Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis PDF Author: Hugh L. Montgomery
Publisher: American Mathematical Soc.
ISBN: 0821807374
Category : Mathematics
Languages : en
Pages : 242

Book Description
This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.

Fourier Analysis on Number Fields

Fourier Analysis on Number Fields PDF Author: Dinakar Ramakrishnan
Publisher: Springer Science & Business Media
ISBN: 1475730853
Category : Mathematics
Languages : en
Pages : 372

Book Description
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.

Groups Acting on Hyperbolic Space

Groups Acting on Hyperbolic Space PDF Author: Juergen Elstrodt
Publisher: Springer Science & Business Media
ISBN: 3662036266
Category : Mathematics
Languages : en
Pages : 530

Book Description
This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n :::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauß had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,

Number Theory, Fourier Analysis and Geometric Discrepancy

Number Theory, Fourier Analysis and Geometric Discrepancy PDF Author: Giancarlo Travaglini
Publisher: Cambridge University Press
ISBN: 1139992821
Category : Mathematics
Languages : en
Pages : 251

Book Description
The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma–Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions.

Harmonic Analysis on the Heisenberg Group

Harmonic Analysis on the Heisenberg Group PDF Author: Sundaram Thangavelu
Publisher: Springer Science & Business Media
ISBN: 1461217725
Category : Mathematics
Languages : en
Pages : 204

Book Description
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu’s exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.

Harmonic Analysis and Applications

Harmonic Analysis and Applications PDF Author: Carlos E. Kenig
Publisher: American Mathematical Soc.
ISBN: 1470461277
Category : Education
Languages : en
Pages : 345

Book Description
The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.

Complex Analysis

Complex Analysis PDF Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831156
Category : Mathematics
Languages : en
Pages : 398

Book Description
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Advances in Mathematical Finance

Advances in Mathematical Finance PDF Author: Michael C. Fu
Publisher: Springer Science & Business Media
ISBN: 0817645454
Category : Business & Economics
Languages : en
Pages : 345

Book Description
This self-contained volume brings together a collection of chapters by some of the most distinguished researchers and practitioners in the field of mathematical finance and financial engineering. Presenting state-of-the-art developments in theory and practice, the book has real-world applications to fixed income models, credit risk models, CDO pricing, tax rebates, tax arbitrage, and tax equilibrium. It is a valuable resource for graduate students, researchers, and practitioners in mathematical finance and financial engineering.

Complex Analysis with Applications to Number Theory

Complex Analysis with Applications to Number Theory PDF Author: Tarlok Nath Shorey
Publisher: Springer Nature
ISBN: 9811590974
Category : Mathematics
Languages : en
Pages : 287

Book Description
The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard’s theorems, Riemann–Zeta function, Dirichlet theorem, gamma function and harmonic functions.