Author: Makhamisa Senekane
Publisher:
ISBN: 9781800201156
Category :
Languages : en
Pages : 252
Book Description
Explore the potential of quantum information processing and understand the state of a quantum system with this practical guide Key Features: Get well-versed with quantum information processing using Python Understand the basics of quantum cryptography by implementing quantum key distribution protocols in Python Implement well-known games such as the CHSH and GHZ games using quantum strategies and techniques Book Description: Quantum computation is the study of a subclass of computers that exploits the laws of quantum mechanics to perform certain operations that are thought to be difficult to perform on a non-quantum computer. Hands-On Quantum Information Processing with Python begins by taking you through the essentials of quantum information processing to help you explore its potential. Next, you'll become well-versed with the fundamental property of quantum entanglement and find out how to illustrate this using the teleportation protocol. As you advance, you'll discover how quantum circuits and algorithms such as Simon's algorithm, Grover's algorithm, and Shor's algorithm work, and get to grips with quantum cryptography by implementing important quantum key distribution (QKD) protocols in Python. You will also learn how to implement non-local games such as the CHSH game and the GHZ game by using Python. Finally, you'll cover key quantum machine learning algorithms, and these implementations will give you full rein to really play with and fully understand more complicated ideas. By the end of this quantum computing book, you will have gained a deeper understanding and appreciation of quantum information. What You Will Learn: Discover how quantum circuits and quantum algorithms work Familiarize yourself with non-local games and learn how to implement them Get to grips with various quantum computing models Implement quantum cryptographic protocols such as BB84 and B92 in Python Explore entanglement and teleportation in quantum systems Find out how to measure and apply operations to qubits Delve into quantum computing with the continuous-variable quantum state Get acquainted with essential quantum machine learning algorithms Who this book is for: This book is for developers, programmers, or undergraduates in computer science who want to learn about the fundamentals of quantum information processing. A basic understanding of the Python programming language is required, and a good grasp of math and statistics will be useful to get the best out of this book.
Hands-On Quantum Information Processing with Python
Author: Makhamisa Senekane
Publisher:
ISBN: 9781800201156
Category :
Languages : en
Pages : 252
Book Description
Explore the potential of quantum information processing and understand the state of a quantum system with this practical guide Key Features: Get well-versed with quantum information processing using Python Understand the basics of quantum cryptography by implementing quantum key distribution protocols in Python Implement well-known games such as the CHSH and GHZ games using quantum strategies and techniques Book Description: Quantum computation is the study of a subclass of computers that exploits the laws of quantum mechanics to perform certain operations that are thought to be difficult to perform on a non-quantum computer. Hands-On Quantum Information Processing with Python begins by taking you through the essentials of quantum information processing to help you explore its potential. Next, you'll become well-versed with the fundamental property of quantum entanglement and find out how to illustrate this using the teleportation protocol. As you advance, you'll discover how quantum circuits and algorithms such as Simon's algorithm, Grover's algorithm, and Shor's algorithm work, and get to grips with quantum cryptography by implementing important quantum key distribution (QKD) protocols in Python. You will also learn how to implement non-local games such as the CHSH game and the GHZ game by using Python. Finally, you'll cover key quantum machine learning algorithms, and these implementations will give you full rein to really play with and fully understand more complicated ideas. By the end of this quantum computing book, you will have gained a deeper understanding and appreciation of quantum information. What You Will Learn: Discover how quantum circuits and quantum algorithms work Familiarize yourself with non-local games and learn how to implement them Get to grips with various quantum computing models Implement quantum cryptographic protocols such as BB84 and B92 in Python Explore entanglement and teleportation in quantum systems Find out how to measure and apply operations to qubits Delve into quantum computing with the continuous-variable quantum state Get acquainted with essential quantum machine learning algorithms Who this book is for: This book is for developers, programmers, or undergraduates in computer science who want to learn about the fundamentals of quantum information processing. A basic understanding of the Python programming language is required, and a good grasp of math and statistics will be useful to get the best out of this book.
Publisher:
ISBN: 9781800201156
Category :
Languages : en
Pages : 252
Book Description
Explore the potential of quantum information processing and understand the state of a quantum system with this practical guide Key Features: Get well-versed with quantum information processing using Python Understand the basics of quantum cryptography by implementing quantum key distribution protocols in Python Implement well-known games such as the CHSH and GHZ games using quantum strategies and techniques Book Description: Quantum computation is the study of a subclass of computers that exploits the laws of quantum mechanics to perform certain operations that are thought to be difficult to perform on a non-quantum computer. Hands-On Quantum Information Processing with Python begins by taking you through the essentials of quantum information processing to help you explore its potential. Next, you'll become well-versed with the fundamental property of quantum entanglement and find out how to illustrate this using the teleportation protocol. As you advance, you'll discover how quantum circuits and algorithms such as Simon's algorithm, Grover's algorithm, and Shor's algorithm work, and get to grips with quantum cryptography by implementing important quantum key distribution (QKD) protocols in Python. You will also learn how to implement non-local games such as the CHSH game and the GHZ game by using Python. Finally, you'll cover key quantum machine learning algorithms, and these implementations will give you full rein to really play with and fully understand more complicated ideas. By the end of this quantum computing book, you will have gained a deeper understanding and appreciation of quantum information. What You Will Learn: Discover how quantum circuits and quantum algorithms work Familiarize yourself with non-local games and learn how to implement them Get to grips with various quantum computing models Implement quantum cryptographic protocols such as BB84 and B92 in Python Explore entanglement and teleportation in quantum systems Find out how to measure and apply operations to qubits Delve into quantum computing with the continuous-variable quantum state Get acquainted with essential quantum machine learning algorithms Who this book is for: This book is for developers, programmers, or undergraduates in computer science who want to learn about the fundamentals of quantum information processing. A basic understanding of the Python programming language is required, and a good grasp of math and statistics will be useful to get the best out of this book.
Hands-On Quantum Machine Learning With Python
Author: Frank Zickert
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 440
Book Description
You're interested in quantum computing and machine learning. But you don't know how to get started? Let me help! Whether you just get started with quantum computing and machine learning or you're already a senior machine learning engineer, Hands-On Quantum Machine Learning With Python is your comprehensive guide to get started with Quantum Machine Learning - the use of quantum computing for the computation of machine learning algorithms. Quantum computing promises to solve problems intractable with current computing technologies. But is it fundamentally different and asks us to change the way we think. Hands-On Quantum Machine Learning With Python strives to be the perfect balance between theory taught in a textbook and the actual hands-on knowledge you'll need to implement real-world solutions. Inside this book, you will learn the basics of quantum computing and machine learning in a practical and applied manner.
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 440
Book Description
You're interested in quantum computing and machine learning. But you don't know how to get started? Let me help! Whether you just get started with quantum computing and machine learning or you're already a senior machine learning engineer, Hands-On Quantum Machine Learning With Python is your comprehensive guide to get started with Quantum Machine Learning - the use of quantum computing for the computation of machine learning algorithms. Quantum computing promises to solve problems intractable with current computing technologies. But is it fundamentally different and asks us to change the way we think. Hands-On Quantum Machine Learning With Python strives to be the perfect balance between theory taught in a textbook and the actual hands-on knowledge you'll need to implement real-world solutions. Inside this book, you will learn the basics of quantum computing and machine learning in a practical and applied manner.
Learn Quantum Computing with Python and Q#
Author: Sarah C. Kaiser
Publisher: Simon and Schuster
ISBN: 1638350906
Category : Computers
Languages : en
Pages : 545
Book Description
Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Summary Learn Quantum Computing with Python and Q# demystifies quantum computing. Using Python and the new quantum programming language Q#, you’ll build your own quantum simulator and apply quantum programming techniques to real-world examples including cryptography and chemical analysis. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Quantum computers present a radical leap in speed and computing power. Improved scientific simulations and new frontiers in cryptography that are impossible with classical computing may soon be in reach. Microsoft’s Quantum Development Kit and the Q# language give you the tools to experiment with quantum computing without knowing advanced math or theoretical physics. About the book Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Use Python to build your own quantum simulator and take advantage of Microsoft’s open source tools to fine-tune quantum algorithms. The authors explain complex math and theory through stories, visuals, and games. You’ll learn to apply quantum to real-world applications, such as sending secret messages and solving chemistry problems. What's inside The underlying mechanics of quantum computers Simulating qubits in Python Exploring quantum algorithms with Q# Applying quantum computing to chemistry, arithmetic, and data About the reader For software developers. No prior experience with quantum computing required. About the author Dr. Sarah Kaiser works at the Unitary Fund, a non-profit organization supporting the quantum open-source ecosystem, and is an expert in building quantum tech in the lab. Dr. Christopher Granade works in the Quantum Systems group at Microsoft, and is an expert in characterizing quantum devices. Table of Contents PART 1 GETTING STARTED WITH QUANTUM 1 Introducing quantum computing 2 Qubits: The building blocks 3 Sharing secrets with quantum key distribution 4 Nonlocal games: Working with multiple qubits 5 Nonlocal games: Implementing a multi-qubit simulator 6 Teleportation and entanglement: Moving quantum data around PART 2 PROGRAMMING QUANTUM ALGORITHMS IN Q# 7 Changing the odds: An introduction to Q# 8 What is a quantum algorithm? 9 Quantum sensing: It’s not just a phase PART 3 APPLIED QUANTUM COMPUTING 10 Solving chemistry problems with quantum computers 11 Searching with quantum computers 12 Arithmetic with quantum computers
Publisher: Simon and Schuster
ISBN: 1638350906
Category : Computers
Languages : en
Pages : 545
Book Description
Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Summary Learn Quantum Computing with Python and Q# demystifies quantum computing. Using Python and the new quantum programming language Q#, you’ll build your own quantum simulator and apply quantum programming techniques to real-world examples including cryptography and chemical analysis. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Quantum computers present a radical leap in speed and computing power. Improved scientific simulations and new frontiers in cryptography that are impossible with classical computing may soon be in reach. Microsoft’s Quantum Development Kit and the Q# language give you the tools to experiment with quantum computing without knowing advanced math or theoretical physics. About the book Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Use Python to build your own quantum simulator and take advantage of Microsoft’s open source tools to fine-tune quantum algorithms. The authors explain complex math and theory through stories, visuals, and games. You’ll learn to apply quantum to real-world applications, such as sending secret messages and solving chemistry problems. What's inside The underlying mechanics of quantum computers Simulating qubits in Python Exploring quantum algorithms with Q# Applying quantum computing to chemistry, arithmetic, and data About the reader For software developers. No prior experience with quantum computing required. About the author Dr. Sarah Kaiser works at the Unitary Fund, a non-profit organization supporting the quantum open-source ecosystem, and is an expert in building quantum tech in the lab. Dr. Christopher Granade works in the Quantum Systems group at Microsoft, and is an expert in characterizing quantum devices. Table of Contents PART 1 GETTING STARTED WITH QUANTUM 1 Introducing quantum computing 2 Qubits: The building blocks 3 Sharing secrets with quantum key distribution 4 Nonlocal games: Working with multiple qubits 5 Nonlocal games: Implementing a multi-qubit simulator 6 Teleportation and entanglement: Moving quantum data around PART 2 PROGRAMMING QUANTUM ALGORITHMS IN Q# 7 Changing the odds: An introduction to Q# 8 What is a quantum algorithm? 9 Quantum sensing: It’s not just a phase PART 3 APPLIED QUANTUM COMPUTING 10 Solving chemistry problems with quantum computers 11 Searching with quantum computers 12 Arithmetic with quantum computers
Learn Quantum Computing with Python and IBM Quantum Experience
Author: Robert Loredo
Publisher: Packt Publishing Ltd
ISBN: 1838986758
Category : Computers
Languages : en
Pages : 510
Book Description
A step-by-step guide to learning the implementation and associated methodologies in quantum computing with the help of the IBM Quantum Experience, Qiskit, and Python that will have you up and running and productive in no time Key FeaturesDetermine the difference between classical computers and quantum computersUnderstand the quantum computational principles such as superposition and entanglement and how they are leveraged on IBM Quantum Experience systemsRun your own quantum experiments and applications by integrating with QiskitBook Description IBM Quantum Experience is a platform that enables developers to learn the basics of quantum computing by allowing them to run experiments on a quantum computing simulator and a real quantum computer. This book will explain the basic principles of quantum mechanics, the principles involved in quantum computing, and the implementation of quantum algorithms and experiments on IBM's quantum processors. You will start working with simple programs that illustrate quantum computing principles and slowly work your way up to more complex programs and algorithms that leverage quantum computing. As you build on your knowledge, you'll understand the functionality of IBM Quantum Experience and the various resources it offers. Furthermore, you'll not only learn the differences between the various quantum computers but also the various simulators available. Later, you'll explore the basics of quantum computing, quantum volume, and a few basic algorithms, all while optimally using the resources available on IBM Quantum Experience. By the end of this book, you'll learn how to build quantum programs on your own and have gained practical quantum computing skills that you can apply to your business. What you will learnExplore quantum computational principles such as superposition and quantum entanglementBecome familiar with the contents and layout of the IBM Quantum ExperienceUnderstand quantum gates and how they operate on qubitsDiscover the quantum information science kit and its elements such as Terra and AerGet to grips with quantum algorithms such as Bell State, Deutsch-Jozsa, Grover's algorithm, and Shor's algorithmHow to create and visualize a quantum circuitWho this book is for This book is for Python developers who are looking to learn quantum computing and put their knowledge to use in practical situations with the help of IBM Quantum Experience. Some background in computer science and high-school-level physics and math is required.
Publisher: Packt Publishing Ltd
ISBN: 1838986758
Category : Computers
Languages : en
Pages : 510
Book Description
A step-by-step guide to learning the implementation and associated methodologies in quantum computing with the help of the IBM Quantum Experience, Qiskit, and Python that will have you up and running and productive in no time Key FeaturesDetermine the difference between classical computers and quantum computersUnderstand the quantum computational principles such as superposition and entanglement and how they are leveraged on IBM Quantum Experience systemsRun your own quantum experiments and applications by integrating with QiskitBook Description IBM Quantum Experience is a platform that enables developers to learn the basics of quantum computing by allowing them to run experiments on a quantum computing simulator and a real quantum computer. This book will explain the basic principles of quantum mechanics, the principles involved in quantum computing, and the implementation of quantum algorithms and experiments on IBM's quantum processors. You will start working with simple programs that illustrate quantum computing principles and slowly work your way up to more complex programs and algorithms that leverage quantum computing. As you build on your knowledge, you'll understand the functionality of IBM Quantum Experience and the various resources it offers. Furthermore, you'll not only learn the differences between the various quantum computers but also the various simulators available. Later, you'll explore the basics of quantum computing, quantum volume, and a few basic algorithms, all while optimally using the resources available on IBM Quantum Experience. By the end of this book, you'll learn how to build quantum programs on your own and have gained practical quantum computing skills that you can apply to your business. What you will learnExplore quantum computational principles such as superposition and quantum entanglementBecome familiar with the contents and layout of the IBM Quantum ExperienceUnderstand quantum gates and how they operate on qubitsDiscover the quantum information science kit and its elements such as Terra and AerGet to grips with quantum algorithms such as Bell State, Deutsch-Jozsa, Grover's algorithm, and Shor's algorithmHow to create and visualize a quantum circuitWho this book is for This book is for Python developers who are looking to learn quantum computing and put their knowledge to use in practical situations with the help of IBM Quantum Experience. Some background in computer science and high-school-level physics and math is required.
Quantum Computing: An Applied Approach
Author: Jack D. Hidary
Publisher: Springer Nature
ISBN: 3030832740
Category : Science
Languages : en
Pages : 422
Book Description
This book integrates the foundations of quantum computing with a hands-on coding approach to this emerging field; it is the first to bring these elements together in an updated manner. This work is suitable for both academic coursework and corporate technical training. The second edition includes extensive updates and revisions, both to textual content and to the code. Sections have been added on quantum machine learning, quantum error correction, Dirac notation and more. This new edition benefits from the input of the many faculty, students, corporate engineering teams, and independent readers who have used the first edition. This volume comprises three books under one cover: Part I outlines the necessary foundations of quantum computing and quantum circuits. Part II walks through the canon of quantum computing algorithms and provides code on a range of quantum computing methods in current use. Part III covers the mathematical toolkit required to master quantum computing. Additional resources include a table of operators and circuit elements and a companion GitHub site providing code and updates. Jack D. Hidary is a research scientist in quantum computing and in AI at Alphabet X, formerly Google X.
Publisher: Springer Nature
ISBN: 3030832740
Category : Science
Languages : en
Pages : 422
Book Description
This book integrates the foundations of quantum computing with a hands-on coding approach to this emerging field; it is the first to bring these elements together in an updated manner. This work is suitable for both academic coursework and corporate technical training. The second edition includes extensive updates and revisions, both to textual content and to the code. Sections have been added on quantum machine learning, quantum error correction, Dirac notation and more. This new edition benefits from the input of the many faculty, students, corporate engineering teams, and independent readers who have used the first edition. This volume comprises three books under one cover: Part I outlines the necessary foundations of quantum computing and quantum circuits. Part II walks through the canon of quantum computing algorithms and provides code on a range of quantum computing methods in current use. Part III covers the mathematical toolkit required to master quantum computing. Additional resources include a table of operators and circuit elements and a companion GitHub site providing code and updates. Jack D. Hidary is a research scientist in quantum computing and in AI at Alphabet X, formerly Google X.
Quantum Computing with Silq Programming
Author: Srinjoy Ganguly
Publisher: Packt Publishing Ltd
ISBN: 1800561210
Category : Computers
Languages : en
Pages : 310
Book Description
Learn the mathematics behind quantum computing and explore the high-level quantum language Silq to take your quantum programming skills to the next level Key FeaturesHarness the potential of quantum computers more effectively using SilqLearn how to solve core problems that you may face while writing quantum programsExplore useful quantum applications such as cryptography and quantum machine learningBook Description Quantum computing is a growing field, with many research projects focusing on programming quantum computers in the most efficient way possible. One of the biggest challenges faced with existing languages is that they work on low-level circuit model details and are not able to represent quantum programs accurately. Developed by researchers at ETH Zurich after analyzing languages including Q# and Qiskit, Silq is a high-level programming language that can be viewed as the C++ of quantum computers! Quantum Computing with Silq Programming helps you explore Silq and its intuitive and simple syntax to enable you to describe complex tasks with less code. This book will help you get to grips with the constructs of the Silq and show you how to write quantum programs with it. You’ll learn how to use Silq to program quantum algorithms to solve existing and complex tasks. Using quantum algorithms, you’ll also gain practical experience in useful applications such as quantum error correction, cryptography, and quantum machine learning. Finally, you’ll discover how to optimize the programming of quantum computers with the simple Silq. By the end of this Silq book, you’ll have mastered the features of Silq and be able to build efficient quantum applications independently. What you will learnIdentify the challenges that researchers face in quantum programmingUnderstand quantum computing concepts and learn how to make quantum circuitsExplore Silq programming constructs and use them to create quantum programsUse Silq to code quantum algorithms such as Grover's and Simon’sDiscover the practicalities of quantum error correction with SilqExplore useful applications such as quantum machine learning in a practical wayWho this book is for This Silq quantum computing book is for students, researchers, and scientists looking to learn quantum computing techniques and software development. Quantum computing enthusiasts who want to explore this futuristic technology will also find this book useful. Beginner-level knowledge of any programming language as well as mathematical topics such as linear algebra, probability, complex numbers, and statistics is required.
Publisher: Packt Publishing Ltd
ISBN: 1800561210
Category : Computers
Languages : en
Pages : 310
Book Description
Learn the mathematics behind quantum computing and explore the high-level quantum language Silq to take your quantum programming skills to the next level Key FeaturesHarness the potential of quantum computers more effectively using SilqLearn how to solve core problems that you may face while writing quantum programsExplore useful quantum applications such as cryptography and quantum machine learningBook Description Quantum computing is a growing field, with many research projects focusing on programming quantum computers in the most efficient way possible. One of the biggest challenges faced with existing languages is that they work on low-level circuit model details and are not able to represent quantum programs accurately. Developed by researchers at ETH Zurich after analyzing languages including Q# and Qiskit, Silq is a high-level programming language that can be viewed as the C++ of quantum computers! Quantum Computing with Silq Programming helps you explore Silq and its intuitive and simple syntax to enable you to describe complex tasks with less code. This book will help you get to grips with the constructs of the Silq and show you how to write quantum programs with it. You’ll learn how to use Silq to program quantum algorithms to solve existing and complex tasks. Using quantum algorithms, you’ll also gain practical experience in useful applications such as quantum error correction, cryptography, and quantum machine learning. Finally, you’ll discover how to optimize the programming of quantum computers with the simple Silq. By the end of this Silq book, you’ll have mastered the features of Silq and be able to build efficient quantum applications independently. What you will learnIdentify the challenges that researchers face in quantum programmingUnderstand quantum computing concepts and learn how to make quantum circuitsExplore Silq programming constructs and use them to create quantum programsUse Silq to code quantum algorithms such as Grover's and Simon’sDiscover the practicalities of quantum error correction with SilqExplore useful applications such as quantum machine learning in a practical wayWho this book is for This Silq quantum computing book is for students, researchers, and scientists looking to learn quantum computing techniques and software development. Quantum computing enthusiasts who want to explore this futuristic technology will also find this book useful. Beginner-level knowledge of any programming language as well as mathematical topics such as linear algebra, probability, complex numbers, and statistics is required.
Quantum Machine Learning With Python
Author: Santanu Pattanayak
Publisher: Apress
ISBN: 9781484265215
Category : Computers
Languages : en
Pages : 295
Book Description
Quickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others. You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others. You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, along with advanced topics of Quantum adiabatic processes and Quantum based optimization. Throughout the book, there are Python implementations of different Quantum machine learning and Quantum computing algorithms using the Qiskit toolkit from IBM and Cirq from Google Research. What You'll Learn Understand Quantum computing and Quantum machine learning Explore varied domains and the scenarios where Quantum machine learning solutions can be applied Develop expertise in algorithm development in varied Quantum computing frameworks Review the major challenges of building large scale Quantum computers and applying its various techniques Who This Book Is For Machine Learning enthusiasts and engineers who want to quickly scale up to Quantum Machine Learning
Publisher: Apress
ISBN: 9781484265215
Category : Computers
Languages : en
Pages : 295
Book Description
Quickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others. You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others. You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, along with advanced topics of Quantum adiabatic processes and Quantum based optimization. Throughout the book, there are Python implementations of different Quantum machine learning and Quantum computing algorithms using the Qiskit toolkit from IBM and Cirq from Google Research. What You'll Learn Understand Quantum computing and Quantum machine learning Explore varied domains and the scenarios where Quantum machine learning solutions can be applied Develop expertise in algorithm development in varied Quantum computing frameworks Review the major challenges of building large scale Quantum computers and applying its various techniques Who This Book Is For Machine Learning enthusiasts and engineers who want to quickly scale up to Quantum Machine Learning
Programming Quantum Computers
Author: Eric R. Johnston
Publisher: O'Reilly Media
ISBN: 1492039659
Category : Computers
Languages : en
Pages : 333
Book Description
Quantum computers are poised to kick-start a new computing revolution—and you can join in right away. If you’re in software engineering, computer graphics, data science, or just an intrigued computerphile, this book provides a hands-on programmer’s guide to understanding quantum computing. Rather than labor through math and theory, you’ll work directly with examples that demonstrate this technology’s unique capabilities. Quantum computing specialists Eric Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia show you how to build the skills, tools, and intuition required to write quantum programs at the center of applications. You’ll understand what quantum computers can do and learn how to identify the types of problems they can solve. This book includes three multichapter sections: Programming for a QPU—Explore core concepts for programming quantum processing units, including how to describe and manipulate qubits and how to perform quantum teleportation. QPU Primitives—Learn algorithmic primitives and techniques, including amplitude amplification, the Quantum Fourier Transform, and phase estimation. QPU Applications—Investigate how QPU primitives are used to build existing applications, including quantum search techniques and Shor’s factoring algorithm.
Publisher: O'Reilly Media
ISBN: 1492039659
Category : Computers
Languages : en
Pages : 333
Book Description
Quantum computers are poised to kick-start a new computing revolution—and you can join in right away. If you’re in software engineering, computer graphics, data science, or just an intrigued computerphile, this book provides a hands-on programmer’s guide to understanding quantum computing. Rather than labor through math and theory, you’ll work directly with examples that demonstrate this technology’s unique capabilities. Quantum computing specialists Eric Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia show you how to build the skills, tools, and intuition required to write quantum programs at the center of applications. You’ll understand what quantum computers can do and learn how to identify the types of problems they can solve. This book includes three multichapter sections: Programming for a QPU—Explore core concepts for programming quantum processing units, including how to describe and manipulate qubits and how to perform quantum teleportation. QPU Primitives—Learn algorithmic primitives and techniques, including amplitude amplification, the Quantum Fourier Transform, and phase estimation. QPU Applications—Investigate how QPU primitives are used to build existing applications, including quantum search techniques and Shor’s factoring algorithm.
Quantum Information Processing and Quantum Error Correction
Author: Ivan Djordjevic
Publisher: Academic Press
ISBN: 0123854911
Category : Computers
Languages : en
Pages : 597
Book Description
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits
Publisher: Academic Press
ISBN: 0123854911
Category : Computers
Languages : en
Pages : 597
Book Description
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits
Quantum Machine Learning: An Applied Approach
Author: Santanu Ganguly
Publisher: Apress
ISBN: 9781484270974
Category : Computers
Languages : en
Pages : 551
Book Description
Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research. The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost. Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms. The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author’s active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples. What You will Learn Understand and explore quantum computing and quantum machine learning, and their application in science and industry Explore various data training models utilizing quantum machine learning algorithms and Python libraries Get hands-on and familiar with applied quantum computing, including freely available cloud-based access Be familiar with techniques for training and scaling quantum neural networks Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive Who This Book Is For Data scientists, machine learning professionals, and researchers
Publisher: Apress
ISBN: 9781484270974
Category : Computers
Languages : en
Pages : 551
Book Description
Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research. The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost. Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms. The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author’s active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples. What You will Learn Understand and explore quantum computing and quantum machine learning, and their application in science and industry Explore various data training models utilizing quantum machine learning algorithms and Python libraries Get hands-on and familiar with applied quantum computing, including freely available cloud-based access Be familiar with techniques for training and scaling quantum neural networks Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive Who This Book Is For Data scientists, machine learning professionals, and researchers