Author: George E. Dieter
Publisher: ASM International
ISBN: 1615032282
Category : Metals
Languages : en
Pages : 410
Book Description
Handbook of Workability and Process Design
Author: George E. Dieter
Publisher: ASM International
ISBN: 1615032282
Category : Metals
Languages : en
Pages : 410
Book Description
Publisher: ASM International
ISBN: 1615032282
Category : Metals
Languages : en
Pages : 410
Book Description
Advances in Plastic Forming of Metals
Author: Myoung-Gyu Lee
Publisher: MDPI
ISBN: 3038972606
Category : Science
Languages : en
Pages : 283
Book Description
This book is a printed edition of the Special Issue "Advances in Plastic Forming of Metals" that was published in Metals
Publisher: MDPI
ISBN: 3038972606
Category : Science
Languages : en
Pages : 283
Book Description
This book is a printed edition of the Special Issue "Advances in Plastic Forming of Metals" that was published in Metals
Biomaterials in Clinical Practice
Author: Fatima Zivic
Publisher: Springer
ISBN: 3319680250
Category : Technology & Engineering
Languages : en
Pages : 823
Book Description
This book covers the properties of biomaterials that have found wide clinical applications, while also reviewing the state-of-the-art in the development towards future medical applications, starting with a brief introduction to the history of biomaterials used in hip arthroplasty. The book then reviews general types of biomaterials – polymers, ceramics, and metals, as well as different material structures such as porous materials and coatings and their applications – before exploring various current research trends, such as biodegradable and porous metals, shape memory alloys, bioactive biomaterials and coatings, and nanometals used in the diagnosis and therapy of cancer. In turn, the book discusses a range of methods and approaches used in connection with biomaterial properties and characterization – chemical properties, biocompatibility, in vivo behaviour characterisation, as well as genotoxicity and mutagenicity – and reviews various diagnostic techniques: histopathological analysis, imagining techniques, and methods for physicochemical and spectroscopic characterization. Properties of stent deployment procedures in cardiovascular surgeries, from aspects of prediction, development and deployment of stent geometries are presented on the basis of novel modelling approaches. The last part of the book presents the clinical applications of biomaterials, together with case studies in dentistry, knee and hip prosthesis. Reflecting the efforts of a multidisciplinary team of authors, gathering chemical engineers, medical doctors, physicists and engineers, it presents a rich blend of perspectives on the application of biomaterials in clinical practice. The book will provide clinicians with an essential review of currently available solutions in specific medical areas, also incorporating non-medical solutions and standpoints, thus offering them a broader selection of materials and implantable solutions. This work is the result of joint efforts of various academic and research institutions participating in WIMB Tempus project, 543898-TEMPUS-1-2013-1-ES-TEMPUS-JPHES, "Development of Sustainable Interrelations between Education, Research and Innovation at WBC Universities in Nanotechnologies and Advanced Materials where Innovation Means Business", co-funded by the Tempus Programme of the European Union.
Publisher: Springer
ISBN: 3319680250
Category : Technology & Engineering
Languages : en
Pages : 823
Book Description
This book covers the properties of biomaterials that have found wide clinical applications, while also reviewing the state-of-the-art in the development towards future medical applications, starting with a brief introduction to the history of biomaterials used in hip arthroplasty. The book then reviews general types of biomaterials – polymers, ceramics, and metals, as well as different material structures such as porous materials and coatings and their applications – before exploring various current research trends, such as biodegradable and porous metals, shape memory alloys, bioactive biomaterials and coatings, and nanometals used in the diagnosis and therapy of cancer. In turn, the book discusses a range of methods and approaches used in connection with biomaterial properties and characterization – chemical properties, biocompatibility, in vivo behaviour characterisation, as well as genotoxicity and mutagenicity – and reviews various diagnostic techniques: histopathological analysis, imagining techniques, and methods for physicochemical and spectroscopic characterization. Properties of stent deployment procedures in cardiovascular surgeries, from aspects of prediction, development and deployment of stent geometries are presented on the basis of novel modelling approaches. The last part of the book presents the clinical applications of biomaterials, together with case studies in dentistry, knee and hip prosthesis. Reflecting the efforts of a multidisciplinary team of authors, gathering chemical engineers, medical doctors, physicists and engineers, it presents a rich blend of perspectives on the application of biomaterials in clinical practice. The book will provide clinicians with an essential review of currently available solutions in specific medical areas, also incorporating non-medical solutions and standpoints, thus offering them a broader selection of materials and implantable solutions. This work is the result of joint efforts of various academic and research institutions participating in WIMB Tempus project, 543898-TEMPUS-1-2013-1-ES-TEMPUS-JPHES, "Development of Sustainable Interrelations between Education, Research and Innovation at WBC Universities in Nanotechnologies and Advanced Materials where Innovation Means Business", co-funded by the Tempus Programme of the European Union.
Collaborative Multidisciplinary Design Optimization for Conceptual Design of Complex Products
Author: Edris Safavi
Publisher: Linköping University Electronic Press
ISBN: 9176857123
Category :
Languages : en
Pages : 88
Book Description
MULTIDESCIPLINARY design optimization (MDO) has developed in theory andpractice during the last three decades with the aim of optimizing complexproducts as well as cutting costs and product development time. Despite thisdevelopment, the implementation of such a method in industry is still a challenge andmany complex products suffer time and cost overruns. Employing higher fidelity models (HFMs) in conceptual design, one of the early and most important phases in the design process, can play an important role in increasing the knowledge base regarding the concept under evaluation. However, design space in the presence of HFMs could significantly be expanded. MDO has proven to be an important tool for searching the design space and finding optimal solutions. This leads to a reduction in the number of design iterations later in the design process, with wiser and more robust decisions made early in the design process to rely on. In complex products, different systems from a multitude of engineering disciplines have to work tightly together. This stresses the importance of evolving various domain experts in the design process to improve the design from diverse engineering perspectives. Involving more engineers in the design process early on raises the challenges of collaboration, known to be an important barrier to MDO implementation in industry. Another barrier is the unavailability and lack of MDO experts in industry; those who understand the MDO process and know the implementation tasks involved. In an endeavor to address the mentioned implementation challenges, a novel collaborative multidisciplinary design optimization (CMDO) framework is defined in order to be applied in the conceptual design phase. CMDO provides a platform where many engineers team up to increase the likelihood of more accurate decisions being taken early on. The structured way to define the engineering responsibilities and tasks involved in MDO helps to facilitate the implementation process. It will be further elaborated that educating active engineers with MDO knowledge is an expensive and time-consuming process for industries. Therefore, a guideline for CMDO implementation in conceptual design is proposed in this thesis that can be easily followed by design engineers with limited prior knowledge in MDO. The performance of the framework is evaluated in a number of case studies, including applications such as aircraft design and the design of a tidal water power plant, and by engineers in industry and student groups in academia.
Publisher: Linköping University Electronic Press
ISBN: 9176857123
Category :
Languages : en
Pages : 88
Book Description
MULTIDESCIPLINARY design optimization (MDO) has developed in theory andpractice during the last three decades with the aim of optimizing complexproducts as well as cutting costs and product development time. Despite thisdevelopment, the implementation of such a method in industry is still a challenge andmany complex products suffer time and cost overruns. Employing higher fidelity models (HFMs) in conceptual design, one of the early and most important phases in the design process, can play an important role in increasing the knowledge base regarding the concept under evaluation. However, design space in the presence of HFMs could significantly be expanded. MDO has proven to be an important tool for searching the design space and finding optimal solutions. This leads to a reduction in the number of design iterations later in the design process, with wiser and more robust decisions made early in the design process to rely on. In complex products, different systems from a multitude of engineering disciplines have to work tightly together. This stresses the importance of evolving various domain experts in the design process to improve the design from diverse engineering perspectives. Involving more engineers in the design process early on raises the challenges of collaboration, known to be an important barrier to MDO implementation in industry. Another barrier is the unavailability and lack of MDO experts in industry; those who understand the MDO process and know the implementation tasks involved. In an endeavor to address the mentioned implementation challenges, a novel collaborative multidisciplinary design optimization (CMDO) framework is defined in order to be applied in the conceptual design phase. CMDO provides a platform where many engineers team up to increase the likelihood of more accurate decisions being taken early on. The structured way to define the engineering responsibilities and tasks involved in MDO helps to facilitate the implementation process. It will be further elaborated that educating active engineers with MDO knowledge is an expensive and time-consuming process for industries. Therefore, a guideline for CMDO implementation in conceptual design is proposed in this thesis that can be easily followed by design engineers with limited prior knowledge in MDO. The performance of the framework is evaluated in a number of case studies, including applications such as aircraft design and the design of a tidal water power plant, and by engineers in industry and student groups in academia.
Primer on Flat Rolling
Author: John G. Lenard
Publisher: Newnes
ISBN: 0080994121
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
Primer on Flat Rolling is a fully revised second edition, and the outcome of over three decades of involvement with the rolling process. It is based on the author's yearly set of lectures, delivered to engineers and technologists working in the rolling metal industry. The essential and basic ideas involved in designing and analysis of the rolling process are presented. The book discusses and illustrates in detail the three components of flat rolling: the mill, the rolled metal, and their interface. New processes are also covered; flexible rolling and accumulative roll-bonding. The last chapter contains problems, with solutions that illustrate the complexities of flat rolling. New chapters include a study of hot rolling of aluminum, contributed by Prof. M. Wells; advanced applications of the finite element method, by Dr. Yuli Liu and by Dr. G. Krallics; roll design by Dr. J. B. Tiley and the history of the development of hot rolling mills, written by Mr. D. R. Adair and E. B. Intong. Engineers, technologists and students can all use this book to aid their planning and analysis of flat rolling processes. - Provides clear descriptions for engineers and technologists working in steel mills - Evaluates the predictive capabilities of mathematical models - Assignments and their solutions are included within the text
Publisher: Newnes
ISBN: 0080994121
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
Primer on Flat Rolling is a fully revised second edition, and the outcome of over three decades of involvement with the rolling process. It is based on the author's yearly set of lectures, delivered to engineers and technologists working in the rolling metal industry. The essential and basic ideas involved in designing and analysis of the rolling process are presented. The book discusses and illustrates in detail the three components of flat rolling: the mill, the rolled metal, and their interface. New processes are also covered; flexible rolling and accumulative roll-bonding. The last chapter contains problems, with solutions that illustrate the complexities of flat rolling. New chapters include a study of hot rolling of aluminum, contributed by Prof. M. Wells; advanced applications of the finite element method, by Dr. Yuli Liu and by Dr. G. Krallics; roll design by Dr. J. B. Tiley and the history of the development of hot rolling mills, written by Mr. D. R. Adair and E. B. Intong. Engineers, technologists and students can all use this book to aid their planning and analysis of flat rolling processes. - Provides clear descriptions for engineers and technologists working in steel mills - Evaluates the predictive capabilities of mathematical models - Assignments and their solutions are included within the text
Aerospace Materials and Material Technologies
Author: N. Eswara Prasad
Publisher: Springer
ISBN: 9811021430
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
This book serves as a comprehensive resource on various traditional, advanced and futuristic material technologies for aerospace applications encompassing nearly 20 major areas. Each of the chapters addresses scientific principles behind processing and production, production details, equipment and facilities for industrial production, and finally aerospace application areas of these material technologies. The chapters are authored by pioneers of industrial aerospace material technologies. This book has a well-planned layout in 4 parts. The first part deals with primary metal and material processing, including nano manufacturing. The second part deals with materials characterization and testing methodologies and technologies. The third part addresses structural design. Finally, several advanced material technologies are covered in the fourth part. Some key advanced topics such as “Structural Design by ASIP”, “Damage Mechanics-Based Life Prediction and Extension” and “Principles of Structural Health Monitoring” are dealt with at equal length as the traditional aerospace materials technology topics. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.
Publisher: Springer
ISBN: 9811021430
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
This book serves as a comprehensive resource on various traditional, advanced and futuristic material technologies for aerospace applications encompassing nearly 20 major areas. Each of the chapters addresses scientific principles behind processing and production, production details, equipment and facilities for industrial production, and finally aerospace application areas of these material technologies. The chapters are authored by pioneers of industrial aerospace material technologies. This book has a well-planned layout in 4 parts. The first part deals with primary metal and material processing, including nano manufacturing. The second part deals with materials characterization and testing methodologies and technologies. The third part addresses structural design. Finally, several advanced material technologies are covered in the fourth part. Some key advanced topics such as “Structural Design by ASIP”, “Damage Mechanics-Based Life Prediction and Extension” and “Principles of Structural Health Monitoring” are dealt with at equal length as the traditional aerospace materials technology topics. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.
Manufacturing Processes 4
Author: Fritz Klocke
Publisher: Springer Science & Business Media
ISBN: 3642367720
Category : Technology & Engineering
Languages : en
Pages : 532
Book Description
This book provides essential information on metal forming, utilizing a practical distinction between bulk and sheet metal forming. In the field of bulk forming, it examines processes of cold, warm and hot bulk forming, as well as rolling and a new addition, the process of thixoforming. As for the field of sheet metal working, on the one hand it deals with sheet metal forming processes (deep drawing, flange forming, stretch drawing, metal spinning and bending). In terms of special processes, the chapters on internal high-pressure forming and high rate forming have been revised and refined. On the other, the book elucidates and presents the state of the art in sheet metal separation processes (shearing and fineblanking). Furthermore, joining by forming has been added to the new edition as a new chapter describing mechanical methods for joining sheet metals. The new chapter “Basic Principles” addresses both sheet metal and bulk forming, in addition to metal physics, plastomechanics and computational basics; these points are complemented by the newly added topics of metallography and analysis, materials and processes for testing, and tribology and lubrication techniques. The chapters are supplemented by an in-depth description of modern numeric methods such as the finite element method. All chapters have been updated and revised for the new edition, and many practical examples from modern manufacturing processes have been added.
Publisher: Springer Science & Business Media
ISBN: 3642367720
Category : Technology & Engineering
Languages : en
Pages : 532
Book Description
This book provides essential information on metal forming, utilizing a practical distinction between bulk and sheet metal forming. In the field of bulk forming, it examines processes of cold, warm and hot bulk forming, as well as rolling and a new addition, the process of thixoforming. As for the field of sheet metal working, on the one hand it deals with sheet metal forming processes (deep drawing, flange forming, stretch drawing, metal spinning and bending). In terms of special processes, the chapters on internal high-pressure forming and high rate forming have been revised and refined. On the other, the book elucidates and presents the state of the art in sheet metal separation processes (shearing and fineblanking). Furthermore, joining by forming has been added to the new edition as a new chapter describing mechanical methods for joining sheet metals. The new chapter “Basic Principles” addresses both sheet metal and bulk forming, in addition to metal physics, plastomechanics and computational basics; these points are complemented by the newly added topics of metallography and analysis, materials and processes for testing, and tribology and lubrication techniques. The chapters are supplemented by an in-depth description of modern numeric methods such as the finite element method. All chapters have been updated and revised for the new edition, and many practical examples from modern manufacturing processes have been added.
Hot Working Guide
Author: Y. V. R. K. Prasad
Publisher: ASM International
ISBN: 9781615032020
Category : Technology & Engineering
Languages : en
Pages : 566
Book Description
A unique source book with flow stress data for hot working, processing maps with metallurgical interpretation and optimum processing conditions for metals, alloys, intermetallics, and metal matrix composites. The use of this book replaces the expensive and time consuming trial and error methods in process design and product development.
Publisher: ASM International
ISBN: 9781615032020
Category : Technology & Engineering
Languages : en
Pages : 566
Book Description
A unique source book with flow stress data for hot working, processing maps with metallurgical interpretation and optimum processing conditions for metals, alloys, intermetallics, and metal matrix composites. The use of this book replaces the expensive and time consuming trial and error methods in process design and product development.
Severe Plastic Deformation
Author: Ghader Faraji
Publisher: Elsevier
ISBN: 0128135670
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
Severe Plastic Deformation: Methods, Processing and Properties examines all severe plastic deformation techniques developed over the past two decades, exploring the appropriate severe plastic deformation method for a particular case. The book offers an overview of these methods, introduces ultrafine-grained and nano-grained metals and methods for various bulk, sheet, tubular and large size samples, reviews effective parameters to make a severe plastic deformation method better, from property (mechanical) and processing (cost, time, load, etc.) viewpoints, discusses mechanical, physical and chemical properties of UFG and NS metals, and concludes with various applications for these methods. Over the last several decades, a large number of severe plastic deformation methods have been developed for processing a wide array of metals for superior properties, making this a timely resource. - Collects all severe plastic deformation methods in a unique reference - Compares severe plastic deformation methods from several viewpoints, including processing and final property - Classifies severe plastic deformation methods based on the sample shape and mechanics, as well as the properties achieved in the processed metal - Introduces ultrafine-grained and nano-grained metals and methods for various bulk, sheet, tubular and large size samples
Publisher: Elsevier
ISBN: 0128135670
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
Severe Plastic Deformation: Methods, Processing and Properties examines all severe plastic deformation techniques developed over the past two decades, exploring the appropriate severe plastic deformation method for a particular case. The book offers an overview of these methods, introduces ultrafine-grained and nano-grained metals and methods for various bulk, sheet, tubular and large size samples, reviews effective parameters to make a severe plastic deformation method better, from property (mechanical) and processing (cost, time, load, etc.) viewpoints, discusses mechanical, physical and chemical properties of UFG and NS metals, and concludes with various applications for these methods. Over the last several decades, a large number of severe plastic deformation methods have been developed for processing a wide array of metals for superior properties, making this a timely resource. - Collects all severe plastic deformation methods in a unique reference - Compares severe plastic deformation methods from several viewpoints, including processing and final property - Classifies severe plastic deformation methods based on the sample shape and mechanics, as well as the properties achieved in the processed metal - Introduces ultrafine-grained and nano-grained metals and methods for various bulk, sheet, tubular and large size samples
Manufacturing Processes 1
Author: Fritz Klocke
Publisher: Springer Science & Business Media
ISBN: 3642119794
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The book series on manufacturing processes for engineers is a reference work for scientific and industrial experts. This volume on Turning, Milling and Drilling starts from the basic principles of machining with geometrically defined cutting edges based on a common active principle. In addition, appropriate tool designs as well as the reasonable use of cutting material are presented. A detailed chapter about the machinability of the most important workpiece materials, such as steel and cast iron, light metal alloys and high temperature resistant materials imparts a broad knowledge of the interrelations between workpiece materials, cutting materials and process parameters. This book is in the RWTHedition Series as are the other four volumes of the reference work.
Publisher: Springer Science & Business Media
ISBN: 3642119794
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The book series on manufacturing processes for engineers is a reference work for scientific and industrial experts. This volume on Turning, Milling and Drilling starts from the basic principles of machining with geometrically defined cutting edges based on a common active principle. In addition, appropriate tool designs as well as the reasonable use of cutting material are presented. A detailed chapter about the machinability of the most important workpiece materials, such as steel and cast iron, light metal alloys and high temperature resistant materials imparts a broad knowledge of the interrelations between workpiece materials, cutting materials and process parameters. This book is in the RWTHedition Series as are the other four volumes of the reference work.