Author: Tshilidzi Marwala
Publisher: World Scientific
ISBN: 981120568X
Category : Computers
Languages : en
Pages : 321
Book Description
Building on , this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.
Handbook Of Machine Learning - Volume 2: Optimization And Decision Making
Artificial Intelligence and the Law
Author: Tshilidzi Marwala
Publisher: Springer Nature
ISBN: 9819728274
Category :
Languages : en
Pages : 267
Book Description
Publisher: Springer Nature
ISBN: 9819728274
Category :
Languages : en
Pages : 267
Book Description
Rational Machines and Artificial Intelligence
Author: Tshilidzi Marwala
Publisher: Academic Press
ISBN: 0128209445
Category : Science
Languages : en
Pages : 272
Book Description
Intelligent machines are populating our social, economic and political spaces. These intelligent machines are powered by Artificial Intelligence technologies such as deep learning. They are used in decision making. One element of decision making is the issue of rationality. Regulations such as the General Data Protection Regulation (GDPR) require that decisions that are made by these intelligent machines are explainable. Rational Machines and Artificial Intelligence proposes that explainable decisions are good but the explanation must be rational to prevent these decisions from being challenged. Noted author Tshilidzi Marwala studies the concept of machine rationality and compares this to the rationality bounds prescribed by Nobel Laureate Herbert Simon and rationality bounds derived from the work of Nobel Laureates Richard Thaler and Daniel Kahneman. Rational Machines and Artificial Intelligence describes why machine rationality is flexibly bounded due to advances in technology. This effectively means that optimally designed machines are more rational than human beings. Readers will also learn whether machine rationality can be quantified and identify how this can be achieved. Furthermore, the author discusses whether machine rationality is subjective. Finally, the author examines whether a population of intelligent machines collectively make more rational decisions than individual machines. Examples in biomedical engineering, social sciences and the financial sectors are used to illustrate these concepts. - Provides an introduction to the key questions and challenges surrounding Rational Machines, including, When do we rely on decisions made by intelligent machines? What do decisions made by intelligent machines mean? Are these decisions rational or fair? Can we quantify these decisions? and Is rationality subjective? - Introduces for the first time the concept of rational opportunity costs and the concept of flexibly bounded rationality as a rationality of intelligent machines and the implications of these issues on the reliability of machine decisions - Includes coverage of Rational Counterfactuals, group versus individual rationality, and rational markets - Discusses the application of Moore's Law and advancements in Artificial Intelligence, as well as developments in the area of data acquisition and analysis technologies and how they affect the boundaries of intelligent machine rationality
Publisher: Academic Press
ISBN: 0128209445
Category : Science
Languages : en
Pages : 272
Book Description
Intelligent machines are populating our social, economic and political spaces. These intelligent machines are powered by Artificial Intelligence technologies such as deep learning. They are used in decision making. One element of decision making is the issue of rationality. Regulations such as the General Data Protection Regulation (GDPR) require that decisions that are made by these intelligent machines are explainable. Rational Machines and Artificial Intelligence proposes that explainable decisions are good but the explanation must be rational to prevent these decisions from being challenged. Noted author Tshilidzi Marwala studies the concept of machine rationality and compares this to the rationality bounds prescribed by Nobel Laureate Herbert Simon and rationality bounds derived from the work of Nobel Laureates Richard Thaler and Daniel Kahneman. Rational Machines and Artificial Intelligence describes why machine rationality is flexibly bounded due to advances in technology. This effectively means that optimally designed machines are more rational than human beings. Readers will also learn whether machine rationality can be quantified and identify how this can be achieved. Furthermore, the author discusses whether machine rationality is subjective. Finally, the author examines whether a population of intelligent machines collectively make more rational decisions than individual machines. Examples in biomedical engineering, social sciences and the financial sectors are used to illustrate these concepts. - Provides an introduction to the key questions and challenges surrounding Rational Machines, including, When do we rely on decisions made by intelligent machines? What do decisions made by intelligent machines mean? Are these decisions rational or fair? Can we quantify these decisions? and Is rationality subjective? - Introduces for the first time the concept of rational opportunity costs and the concept of flexibly bounded rationality as a rationality of intelligent machines and the implications of these issues on the reliability of machine decisions - Includes coverage of Rational Counterfactuals, group versus individual rationality, and rational markets - Discusses the application of Moore's Law and advancements in Artificial Intelligence, as well as developments in the area of data acquisition and analysis technologies and how they affect the boundaries of intelligent machine rationality
Handbook of Machine Learning for Computational Optimization
Author: Vishal Jain
Publisher: CRC Press
ISBN: 100045567X
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.
Publisher: CRC Press
ISBN: 100045567X
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.
Artificial Intelligence, Game Theory and Mechanism Design in Politics
Author: Tshilidzi Marwala
Publisher: Springer Nature
ISBN: 9819951038
Category : Political Science
Languages : en
Pages : 221
Book Description
This book explores how AI and mechanism design can provide a new framework for international politics. The international political system is all manners in which countries, governments and people relate. Mechanism design in international politics relates to identifying rules that define relationships between people and countries that achieve a particular outcome, e.g., peace or more trade or democracy or economic development. Artificial intelligence is technique of making machines intelligent. This book explores mechanism design and artificial intelligence in international politics and applies these technologies to politics, economy and society. This book will be of interest to scholars of international relations, politics, sustainable development, and artificial intelligence.
Publisher: Springer Nature
ISBN: 9819951038
Category : Political Science
Languages : en
Pages : 221
Book Description
This book explores how AI and mechanism design can provide a new framework for international politics. The international political system is all manners in which countries, governments and people relate. Mechanism design in international politics relates to identifying rules that define relationships between people and countries that achieve a particular outcome, e.g., peace or more trade or democracy or economic development. Artificial intelligence is technique of making machines intelligent. This book explores mechanism design and artificial intelligence in international politics and applies these technologies to politics, economy and society. This book will be of interest to scholars of international relations, politics, sustainable development, and artificial intelligence.
Artificial Intelligence And Emerging Technologies In International Relations
Author: Bhaso Ndzendze
Publisher: World Scientific
ISBN: 9811234566
Category : Computers
Languages : en
Pages : 190
Book Description
Artificial Intelligence and Emerging Technologies in International Relations explores the geopolitics between technology and international relations. Through a focus on war, trade, investment flows, diplomacy, regional integration and development cooperation, this book takes a holistic perspective to examine the origins of technology, analysing its current manifestations in the contemporary world. The authors present the possible future roles of artificial intelligence (AI) and other emerging technologies (including blockchain, 3D printing, 5G connectivity and the Internet of Things) in the context of global arena.This book is essential reading to all who seek to understand the reality of the inequitable distribution of these game-changing technologies that are shaping the world. Research questions as well as some policy options for the developing world are explored and the authors make the case for cooperation by the international community as we enter the fourth industrial revolution.
Publisher: World Scientific
ISBN: 9811234566
Category : Computers
Languages : en
Pages : 190
Book Description
Artificial Intelligence and Emerging Technologies in International Relations explores the geopolitics between technology and international relations. Through a focus on war, trade, investment flows, diplomacy, regional integration and development cooperation, this book takes a holistic perspective to examine the origins of technology, analysing its current manifestations in the contemporary world. The authors present the possible future roles of artificial intelligence (AI) and other emerging technologies (including blockchain, 3D printing, 5G connectivity and the Internet of Things) in the context of global arena.This book is essential reading to all who seek to understand the reality of the inequitable distribution of these game-changing technologies that are shaping the world. Research questions as well as some policy options for the developing world are explored and the authors make the case for cooperation by the international community as we enter the fourth industrial revolution.
New Foundation Of Artificial Intelligence
Author: Ming Xie
Publisher: World Scientific
ISBN: 9811232229
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
This book lays a new foundation toward achieving artificial self-intelligence by future machines such as intelligent vehicles. Its chapters provide a broad coverage to the three key modules behind the design and development of intelligent vehicles for the ultimate purpose of actively ensuring driving safety as well as preventing accidents from all possible causes. Self-contained and unified in presentation, the book explains in details the fundamental solutions of vehicle's perception, vehicle's decision-making, and vehicle's action-taking in a pedagogic order.Besides the fundamental knowledge and concepts of intelligent vehicle's perception, decision and action, this book includes a comprehensive set of real-life application scenarios in which intelligent vehicles will play a major role or contribution. These case studies of real-life applications will help motivate students to learn this exciting subject. With concise and simple explanations, and boasting a rich set of graphical illustrations, the book is an invaluable source for both undergraduate and postgraduate courses, on artificial intelligence, intelligent vehicle, and robotics, which are offered in automotive engineering, computer engineering, electronic engineering, and mechanical engineering. In addition, the book will help strengthen the knowledge and skills of young researchers who want to venture into the research and development of artificial self-intelligence for intelligent vehicles of the future.Related Link(s)
Publisher: World Scientific
ISBN: 9811232229
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
This book lays a new foundation toward achieving artificial self-intelligence by future machines such as intelligent vehicles. Its chapters provide a broad coverage to the three key modules behind the design and development of intelligent vehicles for the ultimate purpose of actively ensuring driving safety as well as preventing accidents from all possible causes. Self-contained and unified in presentation, the book explains in details the fundamental solutions of vehicle's perception, vehicle's decision-making, and vehicle's action-taking in a pedagogic order.Besides the fundamental knowledge and concepts of intelligent vehicle's perception, decision and action, this book includes a comprehensive set of real-life application scenarios in which intelligent vehicles will play a major role or contribution. These case studies of real-life applications will help motivate students to learn this exciting subject. With concise and simple explanations, and boasting a rich set of graphical illustrations, the book is an invaluable source for both undergraduate and postgraduate courses, on artificial intelligence, intelligent vehicle, and robotics, which are offered in automotive engineering, computer engineering, electronic engineering, and mechanical engineering. In addition, the book will help strengthen the knowledge and skills of young researchers who want to venture into the research and development of artificial self-intelligence for intelligent vehicles of the future.Related Link(s)
Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
The Hundred-page Machine Learning Book
Author: Andriy Burkov
Publisher:
ISBN: 9781999579500
Category : Machine learning
Languages : en
Pages : 141
Book Description
Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.
Publisher:
ISBN: 9781999579500
Category : Machine learning
Languages : en
Pages : 141
Book Description
Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.