Hamiltonian Group Actions and Equivariant Cohomology

Hamiltonian Group Actions and Equivariant Cohomology PDF Author: Shubham Dwivedi
Publisher: Springer Nature
ISBN: 3030272273
Category : Mathematics
Languages : en
Pages : 140

Book Description
This monograph could be used for a graduate course on symplectic geometry as well as for independent study. The monograph starts with an introduction of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensive treatment of Equivariant cohomology. The monograph also contains detailed treatment of the Duistermaat-Heckman Theorem, geometric quantization, and flat connections on 2-manifolds. Finally, there is an appendix which provides background material on Lie groups. A course on differential topology is an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry.

Moment Maps, Cobordisms, and Hamiltonian Group Actions

Moment Maps, Cobordisms, and Hamiltonian Group Actions PDF Author: Victor Guillemin
Publisher: American Mathematical Soc.
ISBN: 0821805029
Category : Mathematics
Languages : en
Pages : 362

Book Description
During the last 20 years, ``localization'' has been one of the dominant themes in the area of equivariant differential geometry. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the ``quantization commutes with reduction'' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds. A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an ``abstract moment map''. This is a natural and important generalization of the notion of a moment map occurring in the theory of Hamiltonian dynamics. The book contains a number of appendices that include introductions to proper group-actions on manifolds, equivariant cohomology, Spin${^\mathrm{c}}$-structures, and stable complex structures. It is geared toward graduate students and research mathematicians interested in differential geometry. It is also suitable for topologists, Lie theorists, combinatorists, and theoretical physicists. Prerequisite is some expertise in calculus on manifolds and basic graduate-level differential geometry.

The Topology of Torus Actions on Symplectic Manifolds

The Topology of Torus Actions on Symplectic Manifolds PDF Author: Michèle Audin
Publisher: Birkhäuser
ISBN: 3034872216
Category : Mathematics
Languages : en
Pages : 181

Book Description
The material and references in this extended second edition of "The Topology of Torus Actions on Symplectic Manifolds", published as Volume 93 in this series in 1991, have been updated. Symplectic manifolds and torus actions are investigated, with numerous examples of torus actions, for instance on some moduli spaces. Although the book is still centered on convexity results, it contains much more material, in particular lots of new examples and exercises.

Lectures on Symplectic Geometry

Lectures on Symplectic Geometry PDF Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240

Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Torus Actions on Symplectic Manifolds

Torus Actions on Symplectic Manifolds PDF Author: Michèle Audin
Publisher: Birkhäuser
ISBN: 3034879601
Category : Mathematics
Languages : en
Pages : 331

Book Description
The material and references in this extended second edition of "The Topology of Torus Actions on Symplectic Manifolds", published as Volume 93 in this series in 1991, have been updated. Symplectic manifolds and torus actions are investigated, with numerous examples of torus actions, for instance on some moduli spaces. Although the book is still centered on convexity results, it contains much more material, in particular lots of new examples and exercises.

Kazhdan-Lusztig Theory and Related Topics

Kazhdan-Lusztig Theory and Related Topics PDF Author: Vinay Deodhar
Publisher: American Mathematical Soc.
ISBN: 0821851500
Category : Mathematics
Languages : en
Pages : 288

Book Description
This volume attests to the far-reaching influence of Kazhdan-Lusztig theory on several areas of mathematics by presenting a diverse set of research articles centered on this theme. Although there has been a great deal of work in Kazhdan-Lusztig theory, this book is perhaps the first to discuss all aspects of the theory and gives readers a flavor of the range of topics involved. The articles present recent work in Kazhdan-Lusztig theory, including representations of Kac-Moody Lie algebras, geometry of Schubert varieties, intersection cohomology of stratified spaces, and some new topics such as quantum groups.

Symplectic Geometry and Quantization

Symplectic Geometry and Quantization PDF Author: Yoshiaki Maeda
Publisher: American Mathematical Soc.
ISBN: 0821803026
Category : Mathematics
Languages : en
Pages : 298

Book Description
This volume contains a state-of-the-art discussion of recent progress in a range of related topics in symplectic geometry and mathematical physics, including symplectic groupoids, geometric quantization, noncommutative differential geometry, equivariant cohomology, deformation quantization, topological quantum field theory, and knot invariants.

Global Dynamics, Phase Space Transport, Orbits Homoclinic to Resonances, and Applications

Global Dynamics, Phase Space Transport, Orbits Homoclinic to Resonances, and Applications PDF Author: Stephen Wiggins
Publisher: American Mathematical Soc.
ISBN: 9780821871676
Category : Education
Languages : en
Pages : 538

Book Description
This monograph, which grew out of a series of lectures delivered by Stephen Wiggins at the Fields Institute in early 1993, is concerned with the geometrical viewpoint of the global dynamics of nonlinear dynamical systems. With appropriate examples and concise explanations, Wiggins unites many different topics into one volume and makes a unique contribution to the field. Engineers, physicists, chemists, and mathematicians who work on issues related to the global dynamics of nonlinear dynamical systems will find these lectures very useful.

Introductory Lectures on Equivariant Cohomology

Introductory Lectures on Equivariant Cohomology PDF Author: Loring W. Tu
Publisher: Princeton University Press
ISBN: 0691197482
Category : Mathematics
Languages : en
Pages : 338

Book Description
This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.

Toric Topology

Toric Topology PDF Author: Megumi Harada
Publisher: American Mathematical Soc.
ISBN: 0821844865
Category : Mathematics
Languages : en
Pages : 424

Book Description
Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifold interact in a rich variety of ways, thus illuminating subtle aspects of both the combinatorics and the equivariant topology. Many of the motivations and guiding principles of the fieldare provided by (though not limited to) the theory of toric varieties in algebraic geometry as well as that of symplectic toric manifolds in symplectic geometry.This volume is the proceedings of the International Conference on Toric Topology held in Osaka in May-June 2006. It contains about 25 research and survey articles written by conference speakers, covering many different aspects of, and approaches to, torus actions, such as those mentioned above. Some of the manuscripts are survey articles, intended to give a broad overview of an aspect of the subject; all manuscripts consciously aim to be accessible to a broad reading audience of students andresearchers interested in the interaction of the subjects involved. We hope that this volume serves as an enticing invitation to this emerging field.