Hair Cell Regeneration & Hearing Loss Fact Sheet PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hair Cell Regeneration & Hearing Loss Fact Sheet PDF full book. Access full book title Hair Cell Regeneration & Hearing Loss Fact Sheet by . Download full books in PDF and EPUB format.

Hair Cell Regeneration & Hearing Loss Fact Sheet

Hair Cell Regeneration & Hearing Loss Fact Sheet PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Hair Cell Regeneration & Hearing Loss Fact Sheet

Hair Cell Regeneration & Hearing Loss Fact Sheet PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Hair Cell Regeneration

Hair Cell Regeneration PDF Author: Mark E. Warchol
Publisher: Springer Nature
ISBN: 3031206614
Category : Medical
Languages : en
Pages : 242

Book Description
This volume provides a detailed update on progress in the field of hair cell regeneration. This topic is of considerable interest to academicians, clinicians, and commercial entities, including students of auditory and vestibular neuroscience, audiologists, otologists, and industry, all of whom may have interest in hair cell regeneration as a potential future therapy for hearing and balance dysfunction. In 2008, Springer published a SHAR volume on this subject (Hair Cell Regeneration, Repair, and Protection, Editors Richard Salvi and Richard Fay). Since that time, there has been considerable advancement in this field.This book provides a historical perspective on the field, but the emphasis is on more "prospective" views of the various facets of regeneration research, in the hope that the volume will stimulate new projects and approaches, focusing on the limitations of current knowledge and describing promising strategies for future work. The book will include the following key features of hair cell regeneration: • Cellular and molecular control hair cell regeneration in non-mammalian species (in particular zebrafish and chickens) • Our current understanding of the capacity for hair cell replacement in mammals (rodents and humans). • Signals controlling pro-regenerative behaviors in supporting cells, the hair cell progenitors. • New techniques that have been applied to study the genetic and epigenetic regulation of hair cell regeneration in mammals and non-mammals. • Contributions of stem cells toward building new tools to explore how hair cell regeneration is controlled and toward developing cells and tissue for therapeutic transplantation. • Studies that have applied gene and drug therapy to promote regeneration in mammals.

Hair Cell Regeneration, Repair, and Protection

Hair Cell Regeneration, Repair, and Protection PDF Author: Richard J. Salvi
Publisher: Springer Science & Business Media
ISBN: 0387733647
Category : Science
Languages : en
Pages : 323

Book Description
Not male pattern baldness, but the loss of sensory hair, is a very serious topic. Sensory hair cells convert sound and motion into our sense of hearing, movement, and head position. In mammals, the loss of hair cells is irreversible. Or is it? Hair cells in other vertebrates are capable of regenerating and recovering partial or complete function. This book provides a comprehensive survey of the regeneration of sensory hair cells.

Sensory Hair Cell Death and Regeneration

Sensory Hair Cell Death and Regeneration PDF Author: Michael E. Smith
Publisher: Frontiers Media SA
ISBN: 2889450007
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 268

Book Description
Sensory hair cells are the specialized mechanosensory receptors found in vertebrate auditory, vestibular, and lateral line organs that transduce vibratory and acoustic stimuli into the sensations of hearing and balance. Hair cells can be damaged due to such factors as aging, ototoxic chemicals, acoustic trauma, infection, or genetic factors. Loss of these hair cells lead to deficits in hearing and balance, and in mammals, such deficits are permanent. In contrast, non-mammalian vertebrates exhibit the capability to regenerate missing hair cells. Researchers have been examining the process of hair cell death and regeneration in animal models in an attempt to find ways of either preventing hair cell loss or stimulating the production of new hair cells in mammals, with the ultimate goal of finding new therapeutics for human sensorineural hearing and balance deficits. This has led to a wide array of research on sensory hair cells- such as understanding the factors that cause hair cell loss and finding agents that protect them from damage, elucidating the cell signaling pathways activated during hair cell death, examining the genes and cellular pathways that are regulated during the process of hair cell death and regeneration, and characterizing the functional sensory loss and recovery following acoustic or ototoxic insults to the inner ear. This research has involved cell and developmental biologists, physiologists, geneticists, bioinformaticians, and otolaryngologists. In this Research Topic, we have collated reviews of the past progress of hair cell death and regeneration studies and original research articles advancing sensory hair cell death and regeneration research into the future.

Cochlear Hair Cell Regeneration from Neonatal Mouse Supporting Cells

Cochlear Hair Cell Regeneration from Neonatal Mouse Supporting Cells PDF Author: Naomi F. Bramhall
Publisher:
ISBN:
Category :
Languages : en
Pages : 91

Book Description
Unlike lower vertebrates, capable of spontaneous hair cell regeneration, mammals experience permanent sensorineural hearing loss following hair cell damage. Although low levels of hair cell regeneration have been demonstrated in the immature mammalian vestibular system, the cochlea has been thought to lack any spontaneous regenerative potential. Inhibition of the Notch pathway can stimulate hair cell generation in neonatal mammals, but the specific source of these new hair cells has been unclear. Here, using in vitro lineage tracing with the supporting cell markers Sox2 and Lgr5, we show that Lgr5-positive inner pillar and 3rd Deiter's cells in gentamicin-damaged organs of Corti from neonatal mice give rise to new hair cells following treatment with a Notch inhibitor. These new hair cells are generated primarily through direct transdifferentiation of supporting cells, although a small number show evidence of proliferation. Inner pillar cells show the greatest transdifferentation capability, giving rise to immature outer hair cells, and transdifferentiating in response to damage even in the absence of Notch inhibition. In vivo pharmacologic inhibition of Notch and in vivo lineage tracing with Sox2 during genetic Notch inhibition provide generally consistent results, although additional new hair cells develop in the inner hair cell region. These data suggest a spontaneous capacity for hair cell regeneration in the neonatal mammalian cochlea. In addition, the data identify Lgr5-positive supporting cells as potential hair cell progenitors, making them an attractive target for future hair cell regeneration treatments.

The Mechanism on Development and Regeneration of Inner Ear Hair Cells

The Mechanism on Development and Regeneration of Inner Ear Hair Cells PDF Author: Dongdong Ren
Publisher: Frontiers Media SA
ISBN: 283250003X
Category : Science
Languages : en
Pages : 139

Book Description


Hearing Loss: Mechanisms, Prevention and Cure

Hearing Loss: Mechanisms, Prevention and Cure PDF Author: Huawei Li
Publisher: Springer
ISBN: 9811361231
Category : Medical
Languages : en
Pages : 180

Book Description
This book systematically discusses the pathogenesis, prevention, and the current and potential clinical treatment of hearing loss, as well as the latest advances in hearing research. Hearing loss is a prevalent sensory disorder, which according to a 2015 World Health Organization (WHO) report affected 9% of the global population in 2015. As populations continue to age, more and more people are suffering from the condition, with 60% of those aged between 65 and 75 affected. Hearing loss seriously affects patients’ ability to work ability and quality of life, and as such deafness has become an increasingly urgent social problem around the globe. Sensorineural hearing loss is mainly caused by damage to the hair cells (HCs), and the subsequent loss of spiral ganglion neurons (SGNs). Damage to the HCs in the inner ear can result from exposure to loud noises and environmental and chemical toxins as well as genetic disorders, aging, and certain medications. This book provides ENT specialists and researchers, as well as individuals affected a comprehensive introduction to the field of hearing loss.

Gene therapy for hearing loss: From mechanism to clinic, volume II

Gene therapy for hearing loss: From mechanism to clinic, volume II PDF Author: Zuhong He
Publisher: Frontiers Media SA
ISBN: 2832549349
Category : Science
Languages : en
Pages : 124

Book Description


Stem Cells and the Future of Regenerative Medicine

Stem Cells and the Future of Regenerative Medicine PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309170427
Category : Science
Languages : en
Pages : 112

Book Description
Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.

Magnesium in the Central Nervous System

Magnesium in the Central Nervous System PDF Author: Robert Vink
Publisher: University of Adelaide Press
ISBN: 0987073052
Category : Medical
Languages : en
Pages : 354

Book Description
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.