Gyrokinetic Particle Simulations of Reversed Shear Alfvén Eigenmodes in Fusion Plasmas PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Gyrokinetic Particle Simulations of Reversed Shear Alfvén Eigenmodes in Fusion Plasmas PDF full book. Access full book title Gyrokinetic Particle Simulations of Reversed Shear Alfvén Eigenmodes in Fusion Plasmas by Wenjun Deng. Download full books in PDF and EPUB format.

Gyrokinetic Particle Simulations of Reversed Shear Alfvén Eigenmodes in Fusion Plasmas

Gyrokinetic Particle Simulations of Reversed Shear Alfvén Eigenmodes in Fusion Plasmas PDF Author: Wenjun Deng
Publisher:
ISBN: 9781267107008
Category :
Languages : en
Pages : 160

Book Description
A nonlinear gyrokinetic simulation model, which recovers the ideal magnetohydrodynamic (MHD) theory in the linear long-wavelength regime is formulated for studying kinetic MHD processes in magnetized plasmas. This comprehensive formulation enables gyrokinetic simulation of both pressure gradient-driven and current-driven instabilities including ideal and kinetic ballooning modes, kink modes, and shear Alfvén waves, as well as their nonlinear interactions in multi-scale simulations. Implemented in the gyrokinetic toroidal code (GTC), the new formulation is verified in simulations of reversed shear Alfvén eigenmode (RSAE) in fusion plasmas. The antenna excitation of RSAE provides verifications of its mode structure, frequency and damping rate from the initial perturbation simulation with kinetic thermal ions. When excited by fast ions, their non-perturbative contributions modify the mode structure relative to the ideal MHD theory. With inclusion of thermal plasma pressure, the mode frequency increases due to the elevation of the Alfvén continuum by the geodesic compressibility. The GTC simulations have been benchmarked with extended hybrid MHD-gyrokinetic simulations. The verified gyrokinetic simulation model is applied to studying the linear properties of RSAE driven by density gradient of neutral beam injected fast ions in a well-diagnosed DIII-D tokamak experiment (discharge #142111). GTC simulations find that weakly damped RSAE exists due to toroidal coupling and other geometric effects. Various damping and driving mechanisms are identified and measured in the simulations, which shows that accurate damping and growth rate calculation requires true mode structure from non-perturbative, fully self-consistent simulation. The mode structure has no up-down symmetry mainly due to the radial symmetry breaking by the radial variation of fast ion density gradient, as measured in the experiment by electron cyclotron emission imaging. The RSAE frequency up-sweeping and the mode transition from RSAE to toroidal Alfvén eigenmode are in good agreement with the experimental results when scanning the values of the minimum safety factor in simulations. Good agreements in frequencies, growth rates, and mode structures are obtained among simulations of gyrokinetic codes GTC and GYRO, and an MHD-hybrid code TAEFL, which provide further verification and validation of the gyrokinetic model for simulating the kinetic MHD processes. As a prelude to nonlinear simulations of RSAE and associated fast ion transport, properties of microturbulence in reversed shear plasmas are also studied.

Gyrokinetic Particle Simulations of Reversed Shear Alfvén Eigenmodes in Fusion Plasmas

Gyrokinetic Particle Simulations of Reversed Shear Alfvén Eigenmodes in Fusion Plasmas PDF Author: Wenjun Deng
Publisher:
ISBN: 9781267107008
Category :
Languages : en
Pages : 160

Book Description
A nonlinear gyrokinetic simulation model, which recovers the ideal magnetohydrodynamic (MHD) theory in the linear long-wavelength regime is formulated for studying kinetic MHD processes in magnetized plasmas. This comprehensive formulation enables gyrokinetic simulation of both pressure gradient-driven and current-driven instabilities including ideal and kinetic ballooning modes, kink modes, and shear Alfvén waves, as well as their nonlinear interactions in multi-scale simulations. Implemented in the gyrokinetic toroidal code (GTC), the new formulation is verified in simulations of reversed shear Alfvén eigenmode (RSAE) in fusion plasmas. The antenna excitation of RSAE provides verifications of its mode structure, frequency and damping rate from the initial perturbation simulation with kinetic thermal ions. When excited by fast ions, their non-perturbative contributions modify the mode structure relative to the ideal MHD theory. With inclusion of thermal plasma pressure, the mode frequency increases due to the elevation of the Alfvén continuum by the geodesic compressibility. The GTC simulations have been benchmarked with extended hybrid MHD-gyrokinetic simulations. The verified gyrokinetic simulation model is applied to studying the linear properties of RSAE driven by density gradient of neutral beam injected fast ions in a well-diagnosed DIII-D tokamak experiment (discharge #142111). GTC simulations find that weakly damped RSAE exists due to toroidal coupling and other geometric effects. Various damping and driving mechanisms are identified and measured in the simulations, which shows that accurate damping and growth rate calculation requires true mode structure from non-perturbative, fully self-consistent simulation. The mode structure has no up-down symmetry mainly due to the radial symmetry breaking by the radial variation of fast ion density gradient, as measured in the experiment by electron cyclotron emission imaging. The RSAE frequency up-sweeping and the mode transition from RSAE to toroidal Alfvén eigenmode are in good agreement with the experimental results when scanning the values of the minimum safety factor in simulations. Good agreements in frequencies, growth rates, and mode structures are obtained among simulations of gyrokinetic codes GTC and GYRO, and an MHD-hybrid code TAEFL, which provide further verification and validation of the gyrokinetic model for simulating the kinetic MHD processes. As a prelude to nonlinear simulations of RSAE and associated fast ion transport, properties of microturbulence in reversed shear plasmas are also studied.

Simulations of Reversed Shear Alfvén Eigenmodes in Fusion Plasmas

Simulations of Reversed Shear Alfvén Eigenmodes in Fusion Plasmas PDF Author: Wenjun Deng
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659168864
Category :
Languages : en
Pages : 148

Book Description
In fusion plasmas, generated from heating sources or fusion products, energetic particles can excite Alfven eigenmodes, which undermines energetic particle confinement. To reduce or avoid this problem, behaviors of energetic particles and Alfven eigenmodes need to be studied in detail. In this book, a nonlinear gyrokinetic simulation model, which recovers the ideal magnetohydrodynamic (MHD) theory in the linear long-wavelength regime, is formulated for studying kinetic MHD processes in magnetized plasmas. This comprehensive formulation enables gyrokinetic simulation of both pressure gradient-driven and current-driven instabilities including ideal and kinetic ballooning modes, kink modes, and shear Alfven waves, as well as their nonlinear interactions in multi-scale simulations. Implemented in the gyrokinetic toroidal code (GTC), the new formulation is verified in simulations of reversed shear Alfven eigenmode (RSAE). The verified model is then applied to studying the linear properties of RSAE driven by density gradient of neutral beam injected fast ions in a well-diagnosed DIII-D tokamak experiment.

Exascale Scientific Applications

Exascale Scientific Applications PDF Author: Tjerk P. Straatsma
Publisher: CRC Press
ISBN: 1351999249
Category : Computers
Languages : en
Pages : 607

Book Description
Describes practical programming approaches for scientific applications on exascale computer systems Presents strategies to make applications performance portable Provides specific solutions employed in current application porting and development Illustrates domain science software development strategies based on projected trends in supercomputing technology and architectures Includes contributions from leading experts involved in the development and porting of scientific codes for current and future high performance computing resources

Shear-Alfven Waves in Gyrokinetic Plasmas

Shear-Alfven Waves in Gyrokinetic Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
It is found that the thermal fluctuation level of the shear-Alfven waves in a gyrokinetic plasma decreases with plasma b(* cs2/uA2), where cs is the ion acoustic speed and uA is the Alfven velocity. This unique thermodynamic property based on the fluctuation-dissipation theorem is verified in this paper using a new gyrokinetic particle simulation scheme, which splits the particle distribution function into the equilibrium part as well as the adiabatic and nonadiabatic parts.

Alfven Waves in Gyrokinetic Plasmas

Alfven Waves in Gyrokinetic Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
A brief comparison of the properties of Alfven waves that are based on the gyrokinetic description with those derived from the MHD equations is presented. The critical differences between these two approaches are the treatment of the ion polarization effects. As such, the compressional Alfven waves in a gyrokinetic plasma can be eliminated through frequency ordering, whereas geometric simplifications are needed to decouple the shear Alfven waves from the compressional Alfven waves within the context of MHD. Theoretical and numerical procedures of using gyrokinetic particle simulation for studying microturbulence and kinetic-MHD physics including finite Larmor radius effects are also presented.

Supercomputing

Supercomputing PDF Author: Julian M. Kunkel
Publisher: Springer
ISBN: 3642387500
Category : Computers
Languages : en
Pages : 488

Book Description
This book constitutes the refereed proceedings of the 28th International Supercomputing Conference, ISC 2013, held in Leipzig, Germany, in June 2013. The 35 revised full papers presented together were carefully reviewed and selected from 89 submissions. The papers cover the following topics: scalable applications with 50K+ cores; performance improvements in algorithms; accelerators; performance analysis and optimization; library development; administration and management of supercomputers; energy efficiency; parallel I/O; grid and cloud.

Double Gap Alfvén Eigenmodes

Double Gap Alfvén Eigenmodes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
A new type of global shear Alfvén Eigenmode is found in tokamak plasmas where the mode localization is in the region intersecting the Alfvén continuum. The eigenmode is formed by the coupling of two solutions from two adjacent gaps (akin to potential wells) in the shear Alfvén continuum. For tokamak plasmas with reversed magnetic shear it is shown that the toroidiciy-induced solution tunnels through the continuum to match the ellipticity-induced Alfvén eigenmode (TAE and EAE, respectively) so that the resulting solution is continuous at the point of resonance with the continuum. The existence of these Double Gap Alfvén Eigenmodes (DGAEs) allows for potentially new ways of coupling edge fields to the plasma core in conditions where the core region is conventionally considered inaccessible. Implications include new approaches to heating and current drive in fusion plasmas as well as its possible use as core diagnostic in burning plasmas.

Gyrokinetic Simulation of TAE in Fusion Plasmas

Gyrokinetic Simulation of TAE in Fusion Plasmas PDF Author: Zhixuan Wang
Publisher:
ISBN: 9781321024265
Category :
Languages : en
Pages : 126

Book Description
Linear gyrokinetic simulation of fusion plasmas finds a radial localization of the toroidal Alfvén eigenmodes (TAE) due to the non-perturbative energetic particles (EP) contribution. The EP-driven TAE has a radial mode width much smaller than that predicted by the magnetohydrodynamic (MHD) theory. The TAE radial position stays around the strongest EP pressure gradients when the EP profile evolves. The non-perturbative EP contribution is also the main cause for the breaking of the radial symmetry of the ballooning mode structure and for the dependence of the TAE frequency on the toroidal mode number. These phenomena are beyond the picture of the conventional MHD theory. Linear gyrokinetic simulation of the electron cyclotron heating (ECH) experiments on DIII-D successfully recover the TAE and RSAE. The EP profile, rather than the electron temperature, is found to be the key factor determining whether TAE or RSAE is the dominant mode in the system in our simulation. Investigation on the nonlinear gyrokinetic simulation model reveals a missing nonlinear term which has important contributions to the zonal magnetic fields. A new fluid-electron hybrid model is proposed to keep this nonlinear term in the lowest order fluid part. Nonlinear simulation of TAE using DIII-D parameters confirms the importance of this new term for the zonal magnetic fields. It is also found that zonal structures dominated by zonal electric fields are forced driven at about twice the linear growth rate of TAE in the linear phase. The zonal flows then limit the nonlinear saturation level by tearing the eigenmode structures apart. In the nonlinear phase of the simulation, the major frequency in the system chirps down by about 30% and stays there.

Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models

Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We are developing kinetic ion models for the simulation of extended MHD phenomena. The model they have developed uses full Lorentz force ions, and either drift-kinetic or gyro-kinetic electrons. Quasi-neutrality is assumed and the displacement current is neglected. They are also studying alpha particle driven Toroidal Alfven Eigenmodes (TAE) in the GEM gyrokinetic code [Chen 07]. The basic kinetic ion MHD model was recently reported in an invited talk given by Dan Barnes at the 2007 American Physical Society - Division of Plasma Physics (APS-DPP) and it has been published [Jones 04, Barnes 08]. The model uses an Ohm's law that includes the Hall term, pressure term and the electron inertia [Jones 04]. These results focused on the ion physics and assumed an isothermal electron closure. It is found in conventional gyrokinetic turbulence simulations that the timestep cannot be made much greater than the ion cyclotron period. However, the kinetic ion MHD model has the compressional mode, which further limits the timestep. They have developed an implicit scheme to avoid this timestep constraint. They have also added drift kinetic electrons. This model has been benchmarked linearly. Waves investigated where shear and compressional Alfven, whisterl, ion acoustic, and drift waves, including the kinetic damping rates. This work is ongoing and was first reported at the 2008 Sherwood Fusion Theory Conference [Chen 08] and they are working on a publication. They have also formulated an integrated gyrokinetic electron model, which is of interest for studying electron gradient instabilities and weak guide-field magnetic reconnection.

Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test and benchmark for a 2-D Harris current sheet against tearing mode and other instabilities in linear theories/models. More importantly, we have, for the first time, carried out simulation of linear instabilities in a 2-D Harris current sheet with a broad range of guide field BG and the realistic mi/me, and obtained important new results of current sheet instabilities in the presence of a finite BG. Indeed the code has accurately reproduced waves of interest here, such as kinetic Alfven waves, compressional Alfven/whistler wave, and lower-hybrid/modified two-stream waves. Moreover, this simulation scheme is capable of investigating collisionless kinetic physics relevant to magnetic reconnection in the fusion plasmas, in a global scale system for a long-time evolution and, thereby, produce significant new physics compared with both full-particle and hybrid codes. The results, with mi/me=1836 and moderate to large BG as in the real laboratory devices, have not been obtained in previous theory and simulations. The new simulation model will contribute significantly not only to the understanding of fundamental fusion (and space) plasma physics but also to DOE's SciDAC initiative by further pushing the frontiers of simulating realistic fusion plasmas.