Author: Derek F. Holt
Publisher: CRC Press
ISBN: 1420035215
Category : Mathematics
Languages : en
Pages : 532
Book Description
The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics. The Handbook of Computational Group Theory offers the first complete treatment of all the fundame
Handbook of Computational Group Theory
Author: Derek F. Holt
Publisher: CRC Press
ISBN: 1420035215
Category : Mathematics
Languages : en
Pages : 532
Book Description
The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics. The Handbook of Computational Group Theory offers the first complete treatment of all the fundame
Publisher: CRC Press
ISBN: 1420035215
Category : Mathematics
Languages : en
Pages : 532
Book Description
The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics. The Handbook of Computational Group Theory offers the first complete treatment of all the fundame
Computation with Finitely Presented Groups
Author: Charles C. Sims
Publisher: Cambridge University Press
ISBN: 0521432138
Category : Mathematics
Languages : en
Pages : 624
Book Description
Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.
Publisher: Cambridge University Press
ISBN: 0521432138
Category : Mathematics
Languages : en
Pages : 624
Book Description
Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.
Computation with Linear Algebraic Groups
Author: Willem Adriaan de Graaf
Publisher: CRC Press
ISBN: 1498722911
Category : Mathematics
Languages : en
Pages : 324
Book Description
Designed as a self-contained account of a number of key algorithmic problems and their solutions for linear algebraic groups, this book combines in one single text both an introduction to the basic theory of linear algebraic groups and a substantial collection of useful algorithms. Computation with Linear Algebraic Groups offers an invaluable guide to graduate students and researchers working in algebraic groups, computational algebraic geometry, and computational group theory, as well as those looking for a concise introduction to the theory of linear algebraic groups.
Publisher: CRC Press
ISBN: 1498722911
Category : Mathematics
Languages : en
Pages : 324
Book Description
Designed as a self-contained account of a number of key algorithmic problems and their solutions for linear algebraic groups, this book combines in one single text both an introduction to the basic theory of linear algebraic groups and a substantial collection of useful algorithms. Computation with Linear Algebraic Groups offers an invaluable guide to graduate students and researchers working in algebraic groups, computational algebraic geometry, and computational group theory, as well as those looking for a concise introduction to the theory of linear algebraic groups.
Group Theory and Computation
Author: N.S. Narasimha Sastry
Publisher: Springer
ISBN: 9811320470
Category : Mathematics
Languages : en
Pages : 213
Book Description
This book is a blend of recent developments in theoretical and computational aspects of group theory. It presents the state-of-the-art research topics in different aspects of group theory, namely, character theory, representation theory, integral group rings, the Monster simple group, computational algorithms and methods on finite groups, finite loops, periodic groups, Camina groups and generalizations, automorphisms and non-abelian tensor product of groups. Presenting a collection of invited articles by some of the leading and highly active researchers in the theory of finite groups and their representations and the Monster group, with a focus on computational aspects, this book is of particular interest to researchers in the area of group theory and related fields of mathematics.
Publisher: Springer
ISBN: 9811320470
Category : Mathematics
Languages : en
Pages : 213
Book Description
This book is a blend of recent developments in theoretical and computational aspects of group theory. It presents the state-of-the-art research topics in different aspects of group theory, namely, character theory, representation theory, integral group rings, the Monster simple group, computational algorithms and methods on finite groups, finite loops, periodic groups, Camina groups and generalizations, automorphisms and non-abelian tensor product of groups. Presenting a collection of invited articles by some of the leading and highly active researchers in the theory of finite groups and their representations and the Monster group, with a focus on computational aspects, this book is of particular interest to researchers in the area of group theory and related fields of mathematics.
Mathematics and Computation
Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Group Theory in the Bedroom, and Other Mathematical Diversions
Author: Brian Hayes
Publisher: Macmillan + ORM
ISBN: 1429938579
Category : Mathematics
Languages : en
Pages : 284
Book Description
“A refreshing collection of superb mathematical essays . . . from choosing up sides to choosing names, the topics are intriguingly nonstandard . . . First-rate.” —John Allen Paulos, author of Innumeracy A science and technology journalist and essayist whose work has appeared in multiple anthologies, Brian Hayes now presents a selection of his most memorable pieces—including the National Magazine Award–winning “Clock of Ages”—in this enjoyable volume. In addition, Hayes embellishes the collection with an overall scene-setting preface, reconfigured illustrations, and a refreshingly self-critical “Afterthoughts” section appended to each essay. “You don’t have to be a geek to appreciate Hayes’s lively, self-effacing style . . . The first essay explains how clockmakers developed the gears and linkages that enabled fabled medieval clocks to reach remarkable accuracy, as well as predict the day Easter would fall on. Other essays celebrate the notion of random numbers and why they are so hard to achieve. Numerical analysis also plays a role in economic models based on the kinetic theory of gases or simplified markets involving iterations of buying and selling. Hayes goes on to explain how statistics have been applied to compute which quarrels—from interpersonal to world wars—are the deadliest (surprising results here) . . . Challenging but rewarding for anyone intrigued by numbers.” —Kirkus Reviews “As much as any book I can name, Group Theory in the Bedroom conveys to a general audience the playfulness involved in doing mathematics: how questions arise as a form of play, how our first attempts at answering questions usually seem naive in hindsight but are crucial for finding eventual solutions, and how a good solution just feels right.” —David Austin, Notices of the AMS
Publisher: Macmillan + ORM
ISBN: 1429938579
Category : Mathematics
Languages : en
Pages : 284
Book Description
“A refreshing collection of superb mathematical essays . . . from choosing up sides to choosing names, the topics are intriguingly nonstandard . . . First-rate.” —John Allen Paulos, author of Innumeracy A science and technology journalist and essayist whose work has appeared in multiple anthologies, Brian Hayes now presents a selection of his most memorable pieces—including the National Magazine Award–winning “Clock of Ages”—in this enjoyable volume. In addition, Hayes embellishes the collection with an overall scene-setting preface, reconfigured illustrations, and a refreshingly self-critical “Afterthoughts” section appended to each essay. “You don’t have to be a geek to appreciate Hayes’s lively, self-effacing style . . . The first essay explains how clockmakers developed the gears and linkages that enabled fabled medieval clocks to reach remarkable accuracy, as well as predict the day Easter would fall on. Other essays celebrate the notion of random numbers and why they are so hard to achieve. Numerical analysis also plays a role in economic models based on the kinetic theory of gases or simplified markets involving iterations of buying and selling. Hayes goes on to explain how statistics have been applied to compute which quarrels—from interpersonal to world wars—are the deadliest (surprising results here) . . . Challenging but rewarding for anyone intrigued by numbers.” —Kirkus Reviews “As much as any book I can name, Group Theory in the Bedroom conveys to a general audience the playfulness involved in doing mathematics: how questions arise as a form of play, how our first attempts at answering questions usually seem naive in hindsight but are crucial for finding eventual solutions, and how a good solution just feels right.” —David Austin, Notices of the AMS
Complexity and Randomness in Group Theory
Author: Frédérique Bassino
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110667029
Category : Mathematics
Languages : en
Pages : 386
Book Description
This book shows new directions in group theory motivated by computer science. It reflects the transition from geometric group theory to group theory of the 21st century that has strong connections to computer science. Now that geometric group theory is drifting further and further away from group theory to geometry, it is natural to look for new tools and new directions in group theory which are present.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110667029
Category : Mathematics
Languages : en
Pages : 386
Book Description
This book shows new directions in group theory motivated by computer science. It reflects the transition from geometric group theory to group theory of the 21st century that has strong connections to computer science. Now that geometric group theory is drifting further and further away from group theory to geometry, it is natural to look for new tools and new directions in group theory which are present.
A Group Theoretic Approach to Quantum Information
Author: Masahito Hayashi
Publisher: Springer
ISBN: 331945241X
Category : Science
Languages : en
Pages : 240
Book Description
This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.
Publisher: Springer
ISBN: 331945241X
Category : Science
Languages : en
Pages : 240
Book Description
This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.
Group Theory
Author: Pierre Ramond
Publisher: Cambridge University Press
ISBN: 113948964X
Category : Science
Languages : en
Pages :
Book Description
Group theory has long been an important computational tool for physicists, but, with the advent of the Standard Model, it has become a powerful conceptual tool as well. This book introduces physicists to many of the fascinating mathematical aspects of group theory, and mathematicians to its physics applications. Designed for advanced undergraduate and graduate students, this book gives a comprehensive overview of the main aspects of both finite and continuous group theory, with an emphasis on applications to fundamental physics. Finite groups are extensively discussed, highlighting their irreducible representations and invariants. Lie algebras, and to a lesser extent Kac–Moody algebras, are treated in detail, including Dynkin diagrams. Special emphasis is given to their representations and embeddings. The group theory underlying the Standard Model is discussed, along with its importance in model building. Applications of group theory to the classification of elementary particles are treated in detail.
Publisher: Cambridge University Press
ISBN: 113948964X
Category : Science
Languages : en
Pages :
Book Description
Group theory has long been an important computational tool for physicists, but, with the advent of the Standard Model, it has become a powerful conceptual tool as well. This book introduces physicists to many of the fascinating mathematical aspects of group theory, and mathematicians to its physics applications. Designed for advanced undergraduate and graduate students, this book gives a comprehensive overview of the main aspects of both finite and continuous group theory, with an emphasis on applications to fundamental physics. Finite groups are extensively discussed, highlighting their irreducible representations and invariants. Lie algebras, and to a lesser extent Kac–Moody algebras, are treated in detail, including Dynkin diagrams. Special emphasis is given to their representations and embeddings. The group theory underlying the Standard Model is discussed, along with its importance in model building. Applications of group theory to the classification of elementary particles are treated in detail.
Two-Dimensional Homotopy and Combinatorial Group Theory
Author: Cynthia Hog-Angeloni
Publisher: Cambridge University Press
ISBN: 0521447003
Category : Mathematics
Languages : en
Pages : 428
Book Description
Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers.
Publisher: Cambridge University Press
ISBN: 0521447003
Category : Mathematics
Languages : en
Pages : 428
Book Description
Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers.