Author: Andrzej Białynicki-Birula
Publisher: American Mathematical Soc.
ISBN: 9780821860151
Category : Mathematics
Languages : en
Pages : 244
Book Description
This volume contains the proceedings of a conference, sponsored by the Canadian Mathematical Society, on Group Actions and Invariant Theory, held in August, 1988 in Montreal. The conference was the third in a series bringing together researchers from North America and Europe (particularly Poland). The papers collected here will provide an overview of the state of the art of research in this area. The conference was primarily concerned with the geometric side of invariant theory, including explorations of the linearization problem for reductive group actions on affine spaces (with a counterexample given recently by J. Schwarz), spherical and complete symmetric varieties, reductive quotients, automorphisms of affine varieties, and homogeneous vector bundles.
Group Actions and Invariant Theory
Author: Andrzej Białynicki-Birula
Publisher: American Mathematical Soc.
ISBN: 9780821860151
Category : Mathematics
Languages : en
Pages : 244
Book Description
This volume contains the proceedings of a conference, sponsored by the Canadian Mathematical Society, on Group Actions and Invariant Theory, held in August, 1988 in Montreal. The conference was the third in a series bringing together researchers from North America and Europe (particularly Poland). The papers collected here will provide an overview of the state of the art of research in this area. The conference was primarily concerned with the geometric side of invariant theory, including explorations of the linearization problem for reductive group actions on affine spaces (with a counterexample given recently by J. Schwarz), spherical and complete symmetric varieties, reductive quotients, automorphisms of affine varieties, and homogeneous vector bundles.
Publisher: American Mathematical Soc.
ISBN: 9780821860151
Category : Mathematics
Languages : en
Pages : 244
Book Description
This volume contains the proceedings of a conference, sponsored by the Canadian Mathematical Society, on Group Actions and Invariant Theory, held in August, 1988 in Montreal. The conference was the third in a series bringing together researchers from North America and Europe (particularly Poland). The papers collected here will provide an overview of the state of the art of research in this area. The conference was primarily concerned with the geometric side of invariant theory, including explorations of the linearization problem for reductive group actions on affine spaces (with a counterexample given recently by J. Schwarz), spherical and complete symmetric varieties, reductive quotients, automorphisms of affine varieties, and homogeneous vector bundles.
Actions and Invariants of Algebraic Groups
Author: Walter Ricardo Ferrer Santos
Publisher: CRC Press
ISBN: 1482239167
Category : Mathematics
Languages : en
Pages : 479
Book Description
Actions and Invariants of Algebraic Groups, Second Edition presents a self-contained introduction to geometric invariant theory starting from the basic theory of affine algebraic groups and proceeding towards more sophisticated dimensions." Building on the first edition, this book provides an introduction to the theory by equipping the reader with the tools needed to read advanced research in the field. Beginning with commutative algebra, algebraic geometry and the theory of Lie algebras, the book develops the necessary background of affine algebraic groups over an algebraically closed field, and then moves toward the algebraic and geometric aspects of modern invariant theory and quotients.
Publisher: CRC Press
ISBN: 1482239167
Category : Mathematics
Languages : en
Pages : 479
Book Description
Actions and Invariants of Algebraic Groups, Second Edition presents a self-contained introduction to geometric invariant theory starting from the basic theory of affine algebraic groups and proceeding towards more sophisticated dimensions." Building on the first edition, this book provides an introduction to the theory by equipping the reader with the tools needed to read advanced research in the field. Beginning with commutative algebra, algebraic geometry and the theory of Lie algebras, the book develops the necessary background of affine algebraic groups over an algebraically closed field, and then moves toward the algebraic and geometric aspects of modern invariant theory and quotients.
Lectures on Invariant Theory
Author: Igor Dolgachev
Publisher: Cambridge University Press
ISBN: 9780521525480
Category : Mathematics
Languages : en
Pages : 244
Book Description
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.
Publisher: Cambridge University Press
ISBN: 9780521525480
Category : Mathematics
Languages : en
Pages : 244
Book Description
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.
An Introduction to Invariants and Moduli
Author: Shigeru Mukai
Publisher: Cambridge University Press
ISBN: 9780521809061
Category : Mathematics
Languages : en
Pages : 528
Book Description
Sample Text
Publisher: Cambridge University Press
ISBN: 9780521809061
Category : Mathematics
Languages : en
Pages : 528
Book Description
Sample Text
Algorithms in Invariant Theory
Author: Bernd Sturmfels
Publisher: Springer Science & Business Media
ISBN: 3211774173
Category : Mathematics
Languages : en
Pages : 202
Book Description
This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.
Publisher: Springer Science & Business Media
ISBN: 3211774173
Category : Mathematics
Languages : en
Pages : 202
Book Description
This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.
Symmetry, Representations, and Invariants
Author: Roe Goodman
Publisher: Springer Science & Business Media
ISBN: 0387798528
Category : Mathematics
Languages : en
Pages : 731
Book Description
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
Publisher: Springer Science & Business Media
ISBN: 0387798528
Category : Mathematics
Languages : en
Pages : 731
Book Description
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
Reflection Groups and Invariant Theory
Author: Richard Kane
Publisher: Springer Science & Business Media
ISBN: 1475735421
Category : Mathematics
Languages : en
Pages : 382
Book Description
Reflection groups and invariant theory is a branch of mathematics that lies at the intersection between geometry and algebra. The book contains a deep and elegant theory, evolved from various graduate courses given by the author over the past 10 years.
Publisher: Springer Science & Business Media
ISBN: 1475735421
Category : Mathematics
Languages : en
Pages : 382
Book Description
Reflection groups and invariant theory is a branch of mathematics that lies at the intersection between geometry and algebra. The book contains a deep and elegant theory, evolved from various graduate courses given by the author over the past 10 years.
Computational Invariant Theory
Author: Harm Derksen
Publisher: Springer Science & Business Media
ISBN: 3662049589
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.
Publisher: Springer Science & Business Media
ISBN: 3662049589
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.
Multiplicative Invariant Theory
Author: Martin Lorenz
Publisher: Springer Science & Business Media
ISBN: 3540273581
Category : Mathematics
Languages : en
Pages : 179
Book Description
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory.
Publisher: Springer Science & Business Media
ISBN: 3540273581
Category : Mathematics
Languages : en
Pages : 179
Book Description
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory.
Geometric Invariant Theory
Author: David Mumford
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 248
Book Description
This standard reference on applications of invariant theory to the construction of moduli spaces is a systematic exposition of the geometric aspects of classical theory of polynomial invariants. This new, revised edition is completely updated and enlarged with an additional chapter on the moment map by Professor Frances Kirwan. It includes a fully updated bibliography of work in this area.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 248
Book Description
This standard reference on applications of invariant theory to the construction of moduli spaces is a systematic exposition of the geometric aspects of classical theory of polynomial invariants. This new, revised edition is completely updated and enlarged with an additional chapter on the moment map by Professor Frances Kirwan. It includes a fully updated bibliography of work in this area.