Author: Atilla Ansal
Publisher: Springer
ISBN: 3319169645
Category : Science
Languages : en
Pages : 458
Book Description
This book collects 4 keynote and 15 theme lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s nineteen state-of-the-art chapters were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies, and managing risk in seismic regions. The book also presents the First Professor Inge Lehmann Distinguished Award Lecture given by Prof. Shamita Das in honor of Prof. Dr. Inge Lehmann. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge conten t and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Perspectives on European Earthquake Engineering and Seismology
Author: Atilla Ansal
Publisher: Springer
ISBN: 3319169645
Category : Science
Languages : en
Pages : 458
Book Description
This book collects 4 keynote and 15 theme lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s nineteen state-of-the-art chapters were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies, and managing risk in seismic regions. The book also presents the First Professor Inge Lehmann Distinguished Award Lecture given by Prof. Shamita Das in honor of Prof. Dr. Inge Lehmann. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge conten t and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Publisher: Springer
ISBN: 3319169645
Category : Science
Languages : en
Pages : 458
Book Description
This book collects 4 keynote and 15 theme lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s nineteen state-of-the-art chapters were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies, and managing risk in seismic regions. The book also presents the First Professor Inge Lehmann Distinguished Award Lecture given by Prof. Shamita Das in honor of Prof. Dr. Inge Lehmann. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge conten t and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Seismic Hazard and Risk Analysis
Author: Robin K. McGuire
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 248
Book Description
This is the twenty-sixth volume in the Earthquake Engineering Research Institute's series, Connections: The EERI Oral History Series. EERI began this series to preserve the recollections of some of those who have had pioneering careers in the field of earthquake engineering.Mete Sozen (1932-2018) is the Karl H. Kettelhut Distinguished Professor Emeritus of Civil Engineering at Purdue University, Indiana, United States.Besides his academic interest in the development of design codes for concrete structures, Sozen is notable for his contributions to the official post 9/11-government studies of terrorist attacks, including the Oklahoma City bombing, and The Pentagon. Sozen also led a team that created an engineering simulation of American Airlines Flight 11 crashing into the North Tower of the World Trade Center. The computer-animated visualizations were made entirely from the simulation data. He was elected to the National Academy of Engineering in 1977 for contributions to understanding the structural design and behavior of buildings and bridges subjected to earthquake motions.Sozen received his undergraduate education at Robert College (Turkey, 1951) and his master's (1952) and doctoral degrees (1957) from the University of Illinois at Urbana-Champaign.
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 248
Book Description
This is the twenty-sixth volume in the Earthquake Engineering Research Institute's series, Connections: The EERI Oral History Series. EERI began this series to preserve the recollections of some of those who have had pioneering careers in the field of earthquake engineering.Mete Sozen (1932-2018) is the Karl H. Kettelhut Distinguished Professor Emeritus of Civil Engineering at Purdue University, Indiana, United States.Besides his academic interest in the development of design codes for concrete structures, Sozen is notable for his contributions to the official post 9/11-government studies of terrorist attacks, including the Oklahoma City bombing, and The Pentagon. Sozen also led a team that created an engineering simulation of American Airlines Flight 11 crashing into the North Tower of the World Trade Center. The computer-animated visualizations were made entirely from the simulation data. He was elected to the National Academy of Engineering in 1977 for contributions to understanding the structural design and behavior of buildings and bridges subjected to earthquake motions.Sozen received his undergraduate education at Robert College (Turkey, 1951) and his master's (1952) and doctoral degrees (1957) from the University of Illinois at Urbana-Champaign.
Seismic Hazard and Risk Analysis
Author: Jack Baker
Publisher: Cambridge University Press
ISBN: 9781108425056
Category : Technology & Engineering
Languages : en
Pages : 600
Book Description
Seismic hazard and risk analyses underpin the loadings prescribed by engineering design codes, the decisions by asset owners to retrofit structures, the pricing of insurance policies, and many other activities. This is a comprehensive overview of the principles and procedures behind seismic hazard and risk analysis. It enables readers to understand best practises and future research directions. Early chapters cover the essential elements and concepts of seismic hazard and risk analysis, while later chapters shift focus to more advanced topics. Each chapter includes worked examples and problem sets for which full solutions are provided online. Appendices provide relevant background in probability and statistics. Computer codes are also available online to help replicate specific calculations and demonstrate the implementation of various methods. This is a valuable reference for upper level students and practitioners in civil engineering, and earth scientists interested in engineering seismology.
Publisher: Cambridge University Press
ISBN: 9781108425056
Category : Technology & Engineering
Languages : en
Pages : 600
Book Description
Seismic hazard and risk analyses underpin the loadings prescribed by engineering design codes, the decisions by asset owners to retrofit structures, the pricing of insurance policies, and many other activities. This is a comprehensive overview of the principles and procedures behind seismic hazard and risk analysis. It enables readers to understand best practises and future research directions. Early chapters cover the essential elements and concepts of seismic hazard and risk analysis, while later chapters shift focus to more advanced topics. Each chapter includes worked examples and problem sets for which full solutions are provided online. Appendices provide relevant background in probability and statistics. Computer codes are also available online to help replicate specific calculations and demonstrate the implementation of various methods. This is a valuable reference for upper level students and practitioners in civil engineering, and earth scientists interested in engineering seismology.
An Introduction to Probabilistic Seismic Hazard Analysis
Author: J. Paul Guyer, P.E., R.A.
Publisher: Guyer Partners
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 39
Book Description
Introductory technical guidance for civil, geotechnical and structural engineers interested in earthquake hazard analysis. Here is what is discussed: 1. OVERVIEW OF PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) METHODOLOGY 2. CHARACTERIZING SEISMIC SOURCES FOR PSHA 3. GROUND MOTION ATTENUATION CHARACTERIZATION FOR PSHA 4. TREATMENT OF SCIENTIFIC UNCERTAINTY IN PSHA 5. DEVELOPMENT OF SITE-SPECIFIC RESPONSE SPECTRA FROM PSHA 6. DEVELOPMENT OF ACCELEROGRAMS 7. SUMMARY OF STRENGTHS AND LIMITATIONS OF DSHA AND PSHA.
Publisher: Guyer Partners
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 39
Book Description
Introductory technical guidance for civil, geotechnical and structural engineers interested in earthquake hazard analysis. Here is what is discussed: 1. OVERVIEW OF PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) METHODOLOGY 2. CHARACTERIZING SEISMIC SOURCES FOR PSHA 3. GROUND MOTION ATTENUATION CHARACTERIZATION FOR PSHA 4. TREATMENT OF SCIENTIFIC UNCERTAINTY IN PSHA 5. DEVELOPMENT OF SITE-SPECIFIC RESPONSE SPECTRA FROM PSHA 6. DEVELOPMENT OF ACCELEROGRAMS 7. SUMMARY OF STRENGTHS AND LIMITATIONS OF DSHA AND PSHA.
Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations
Author: Luis A. Dalguer
Publisher: Birkhäuser
ISBN: 3319727095
Category : Science
Languages : en
Pages : 333
Book Description
This volume collects several extended articles from the first workshop on Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI). Held in 2015, the workshop was organized by the IAEA to disseminate the use of physics-based fault-rupture models for ground motion prediction in seismic hazard assessments (SHA). The book also presents a number of new contributions on topics ranging from the seismological aspects of earthquake cycle simulations for source scaling evaluation, seismic source characterization, source inversion and physics-based ground motion modeling to engineering applications of simulated ground motion for the analysis of seismic response of structures. Further, it includes papers describing current practices for assessing seismic hazard in terms of nuclear safety in low seismicity areas, and proposals for physics-based hazard assessment for critical structures near large earthquakes. The papers validate and verify the models by comparing synthetic results with observed data and empirical models. The book is a valuable resource for scientists, engineers, students and practitioners involved in all aspects of SHA.
Publisher: Birkhäuser
ISBN: 3319727095
Category : Science
Languages : en
Pages : 333
Book Description
This volume collects several extended articles from the first workshop on Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI). Held in 2015, the workshop was organized by the IAEA to disseminate the use of physics-based fault-rupture models for ground motion prediction in seismic hazard assessments (SHA). The book also presents a number of new contributions on topics ranging from the seismological aspects of earthquake cycle simulations for source scaling evaluation, seismic source characterization, source inversion and physics-based ground motion modeling to engineering applications of simulated ground motion for the analysis of seismic response of structures. Further, it includes papers describing current practices for assessing seismic hazard in terms of nuclear safety in low seismicity areas, and proposals for physics-based hazard assessment for critical structures near large earthquakes. The papers validate and verify the models by comparing synthetic results with observed data and empirical models. The book is a valuable resource for scientists, engineers, students and practitioners involved in all aspects of SHA.
Geotechnical and Environmental Geophysics: Environmental and groundwater
Author: Stanley H. Ward
Publisher:
ISBN:
Category : Engineering geology
Languages : en
Pages : 360
Book Description
Publisher:
ISBN:
Category : Engineering geology
Languages : en
Pages : 360
Book Description
Advances in Assessment and Modeling of Earthquake Loss
Author: Sinan Akkar
Publisher: Springer Nature
ISBN: 3030688135
Category : Science
Languages : en
Pages : 315
Book Description
This open access book originates from an international workshop organized by Turkish Natural Catastrophe Insurance Pool (TCIP) in November 2019 that gathered renown researchers from academia, representatives of leading international reinsurance and modeling companies as well as government agencies responsible of insurance pricing in Turkey. The book includes chapters related to post-earthquake damage assessment, the state-of-art and novel earthquake loss modeling, their implementation and implication in insurance pricing at national, regional and global levels, and the role of earthquake insurance in building resilient societies and fire following earthquakes. The rich context encompassed in the book makes it a valuable tool not only for professionals and researchers dealing with earthquake loss modeling but also for practitioners in the insurance and reinsurance industry.
Publisher: Springer Nature
ISBN: 3030688135
Category : Science
Languages : en
Pages : 315
Book Description
This open access book originates from an international workshop organized by Turkish Natural Catastrophe Insurance Pool (TCIP) in November 2019 that gathered renown researchers from academia, representatives of leading international reinsurance and modeling companies as well as government agencies responsible of insurance pricing in Turkey. The book includes chapters related to post-earthquake damage assessment, the state-of-art and novel earthquake loss modeling, their implementation and implication in insurance pricing at national, regional and global levels, and the role of earthquake insurance in building resilient societies and fire following earthquakes. The rich context encompassed in the book makes it a valuable tool not only for professionals and researchers dealing with earthquake loss modeling but also for practitioners in the insurance and reinsurance industry.
Review of Recommendations for Probabilistic Seismic Hazard Analysis
Author: National Research Council (U.S.). Panel on Seismic Hazard Evaluation
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 0
Book Description
Characterization of Modern and Historical Seismic–Tsunamic Events, and Their Global–Societal Impacts
Author: Y. Dilek
Publisher: Geological Society of London
ISBN: 1786204789
Category : Science
Languages : en
Pages : 430
Book Description
Earthquakes and tsunamis are devastating geohazards with significant societal impacts. Most recent occurrences have shown that their impact on the stability of nations–societies and the world geopolitics is immense, potentially triggering a tipping point for a major downturn in the global economy. This Special Publication presents the most current information on the causes and effects of some of the modern and historical earthquake–tsunami events, and effective practices of risk assessment–disaster management, implemented by various governments, international organizations and intergovernmental agencies. Findings reported here show that the magnitude of human casualties and property loss resulting from earthquakes–tsunamis are highly variable around the globe, and that increased community, national and global resilience is significant to empower societal preparedness for such geohazards. It is clear that all stakeholders, including scientists, policymakers, governments, media and world organizations must work together to disseminate accurate, objective and timely information on geohazards, and to develop effective legislation for risk reduction and realistic hazard mitigation–management measures in our globally connected world of today.
Publisher: Geological Society of London
ISBN: 1786204789
Category : Science
Languages : en
Pages : 430
Book Description
Earthquakes and tsunamis are devastating geohazards with significant societal impacts. Most recent occurrences have shown that their impact on the stability of nations–societies and the world geopolitics is immense, potentially triggering a tipping point for a major downturn in the global economy. This Special Publication presents the most current information on the causes and effects of some of the modern and historical earthquake–tsunami events, and effective practices of risk assessment–disaster management, implemented by various governments, international organizations and intergovernmental agencies. Findings reported here show that the magnitude of human casualties and property loss resulting from earthquakes–tsunamis are highly variable around the globe, and that increased community, national and global resilience is significant to empower societal preparedness for such geohazards. It is clear that all stakeholders, including scientists, policymakers, governments, media and world organizations must work together to disseminate accurate, objective and timely information on geohazards, and to develop effective legislation for risk reduction and realistic hazard mitigation–management measures in our globally connected world of today.
Improved Seismic Monitoring - Improved Decision-Making
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309165032
Category : Science
Languages : en
Pages : 196
Book Description
Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.
Publisher: National Academies Press
ISBN: 0309165032
Category : Science
Languages : en
Pages : 196
Book Description
Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.