Author: ROBERT. SNEDDEN
Publisher:
ISBN: 9781838572884
Category :
Languages : en
Pages :
Book Description
GREAT BREAKTHROUGHS IN MATHEMATICS
Author: ROBERT. SNEDDEN
Publisher:
ISBN: 9781838572884
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781838572884
Category :
Languages : en
Pages :
Book Description
Problem Solved!
Author: Robert Snedden
Publisher: Arcturus Publishing
ISBN: 178950287X
Category : Mathematics
Languages : en
Pages : 272
Book Description
From early humans carving notches in bones to the discovery of quantum mechanics and chaos theory - mathematics has certainly come a long way. Fully illustrated and augmented with helpful timelines and diagrams, Problem Solved! explores some of history's greatest mathematical breakthroughs. Covering topics from Ancient Egyptian geometry to chaos theory, readers will learn about Euclid of Alexandria, Brahmagupta, Sir Isaac Newton, Alan Turing and more. Whether solving practical or abstract problems, these mathematicians have each sought to improve our lives, and have bought us to the world we know today. With each concept explained in easy-to-understand language, there's no need to be a calculus genius to marvel at these incredible feats of problem-solving brilliance.
Publisher: Arcturus Publishing
ISBN: 178950287X
Category : Mathematics
Languages : en
Pages : 272
Book Description
From early humans carving notches in bones to the discovery of quantum mechanics and chaos theory - mathematics has certainly come a long way. Fully illustrated and augmented with helpful timelines and diagrams, Problem Solved! explores some of history's greatest mathematical breakthroughs. Covering topics from Ancient Egyptian geometry to chaos theory, readers will learn about Euclid of Alexandria, Brahmagupta, Sir Isaac Newton, Alan Turing and more. Whether solving practical or abstract problems, these mathematicians have each sought to improve our lives, and have bought us to the world we know today. With each concept explained in easy-to-understand language, there's no need to be a calculus genius to marvel at these incredible feats of problem-solving brilliance.
Math in 100 Key Breakthroughs
Author: Richard Elwes
Publisher: Quercus
ISBN: 9781623650544
Category : Mathematics
Languages : en
Pages : 0
Book Description
Richard Elwes is a writer, teacher and researcher in Mathematics, visiting fellow at the University of Leeds, and contributor to numerous popular science magazines. He is a committed and recognized popularizer of mathematics. Of Elwes, Sonder Books 2011 Standouts said, "Dr. Elwes is brilliant at giving the reader the broad perspective, with enough details to fascinate, rather than confuse." Math in 100 Key Breakthroughs offers a series of short, clear-eyed essays explaining the fundamentals of the mathematical concepts everyone should know. Professor Richard Elwes profiles the most important, groundbreaking, and astonishing discoveries, which together have profoundly influenced our understanding of the universe. From the origins of counting--traced back to more than 35,000 years ago--to such contemporary breakthroughs as Wiles' Proof of Fermat's Last Theorem and Cook & Woolfram's Rule 110, this compulsively readable book tells the story of discovery, invention, and inspiration that have led to humankind's most important mathematical achievements.
Publisher: Quercus
ISBN: 9781623650544
Category : Mathematics
Languages : en
Pages : 0
Book Description
Richard Elwes is a writer, teacher and researcher in Mathematics, visiting fellow at the University of Leeds, and contributor to numerous popular science magazines. He is a committed and recognized popularizer of mathematics. Of Elwes, Sonder Books 2011 Standouts said, "Dr. Elwes is brilliant at giving the reader the broad perspective, with enough details to fascinate, rather than confuse." Math in 100 Key Breakthroughs offers a series of short, clear-eyed essays explaining the fundamentals of the mathematical concepts everyone should know. Professor Richard Elwes profiles the most important, groundbreaking, and astonishing discoveries, which together have profoundly influenced our understanding of the universe. From the origins of counting--traced back to more than 35,000 years ago--to such contemporary breakthroughs as Wiles' Proof of Fermat's Last Theorem and Cook & Woolfram's Rule 110, this compulsively readable book tells the story of discovery, invention, and inspiration that have led to humankind's most important mathematical achievements.
The Great Equations: Breakthroughs in Science from Pythagoras to Heisenberg
Author: Robert P. Crease
Publisher: W. W. Norton & Company
ISBN: 0393345769
Category : Science
Languages : en
Pages : 318
Book Description
"Any reader who aspires to be scientifically literate will find this a good starting place." —Publishers Weekly While we may be familiar with some of science’s greatest equations, we may not know that each and every equation emerged not in "Eureka!" moments but in years of cultural developments and scientific knowledge. With vignettes full of humor, drama, and eccentricity, philosopher and science historian Robert P. Crease shares the stories behind ten of history’s greatest equations, from the "first equation," 1 + 1 = 2, which promises a rational, well-ordered world, to Heisenberg’s uncertainty principle, which reveals the limitations of human knowledge. For every equation, Crease provides a brief account of who discovered it, what dissatisfactions lay behind its discovery, and what the equation says about the nature of our world.
Publisher: W. W. Norton & Company
ISBN: 0393345769
Category : Science
Languages : en
Pages : 318
Book Description
"Any reader who aspires to be scientifically literate will find this a good starting place." —Publishers Weekly While we may be familiar with some of science’s greatest equations, we may not know that each and every equation emerged not in "Eureka!" moments but in years of cultural developments and scientific knowledge. With vignettes full of humor, drama, and eccentricity, philosopher and science historian Robert P. Crease shares the stories behind ten of history’s greatest equations, from the "first equation," 1 + 1 = 2, which promises a rational, well-ordered world, to Heisenberg’s uncertainty principle, which reveals the limitations of human knowledge. For every equation, Crease provides a brief account of who discovered it, what dissatisfactions lay behind its discovery, and what the equation says about the nature of our world.
Concepts of Modern Mathematics
Author: Ian Stewart
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Princeton Companion to Applied Mathematics
Author: Nicholas J. Higham
Publisher: Princeton University Press
ISBN: 0691150397
Category : Mathematics
Languages : en
Pages : 1014
Book Description
The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index
Publisher: Princeton University Press
ISBN: 0691150397
Category : Mathematics
Languages : en
Pages : 1014
Book Description
The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index
How Mathematicians Think
Author: William Byers
Publisher: Princeton University Press
ISBN: 0691145997
Category : Mathematics
Languages : en
Pages : 424
Book Description
To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically--even algorithmically--from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, intuitive responses to ambiguity, contradiction, and paradox. A unique examination of this less-familiar aspect of mathematics, How Mathematicians Think reveals that mathematics is a profoundly creative activity and not just a body of formalized rules and results. Nonlogical qualities, William Byers shows, play an essential role in mathematics. Ambiguities, contradictions, and paradoxes can arise when ideas developed in different contexts come into contact. Uncertainties and conflicts do not impede but rather spur the development of mathematics. Creativity often means bringing apparently incompatible perspectives together as complementary aspects of a new, more subtle theory. The secret of mathematics is not to be found only in its logical structure. The creative dimensions of mathematical work have great implications for our notions of mathematical and scientific truth, and How Mathematicians Think provides a novel approach to many fundamental questions. Is mathematics objectively true? Is it discovered or invented? And is there such a thing as a "final" scientific theory? Ultimately, How Mathematicians Think shows that the nature of mathematical thinking can teach us a great deal about the human condition itself.
Publisher: Princeton University Press
ISBN: 0691145997
Category : Mathematics
Languages : en
Pages : 424
Book Description
To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically--even algorithmically--from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, intuitive responses to ambiguity, contradiction, and paradox. A unique examination of this less-familiar aspect of mathematics, How Mathematicians Think reveals that mathematics is a profoundly creative activity and not just a body of formalized rules and results. Nonlogical qualities, William Byers shows, play an essential role in mathematics. Ambiguities, contradictions, and paradoxes can arise when ideas developed in different contexts come into contact. Uncertainties and conflicts do not impede but rather spur the development of mathematics. Creativity often means bringing apparently incompatible perspectives together as complementary aspects of a new, more subtle theory. The secret of mathematics is not to be found only in its logical structure. The creative dimensions of mathematical work have great implications for our notions of mathematical and scientific truth, and How Mathematicians Think provides a novel approach to many fundamental questions. Is mathematics objectively true? Is it discovered or invented? And is there such a thing as a "final" scientific theory? Ultimately, How Mathematicians Think shows that the nature of mathematical thinking can teach us a great deal about the human condition itself.
Landscape of 21st Century Mathematics
Author: Bogdan Grechuk
Publisher: Springer Nature
ISBN: 3030806278
Category : Mathematics
Languages : en
Pages : 437
Book Description
Landscape of 21st Century Mathematics offers a detailed cross section of contemporary mathematics. Important results of the 21st century are motivated and formulated, providing an overview of recent progress in the discipline. The theorems presented in this book have been selected among recent achievements whose statements can be fully appreciated without extensive background. Grouped by subject, the selected theorems represent all major areas of mathematics: number theory, combinatorics, analysis, algebra, geometry and topology, probability and statistics, algorithms and complexity, and logic and set theory. The presentation is self-contained with context, background and necessary definitions provided for each theorem, all without sacrificing mathematical rigour. Where feasible, brief indications of the main ideas of a proof are given. Rigorous yet accessible, this book presents an array of breathtaking recent advances in mathematics. It is written for everyone with a background in mathematics, from inquisitive university students to mathematicians curious about recent achievements in areas beyond their own.
Publisher: Springer Nature
ISBN: 3030806278
Category : Mathematics
Languages : en
Pages : 437
Book Description
Landscape of 21st Century Mathematics offers a detailed cross section of contemporary mathematics. Important results of the 21st century are motivated and formulated, providing an overview of recent progress in the discipline. The theorems presented in this book have been selected among recent achievements whose statements can be fully appreciated without extensive background. Grouped by subject, the selected theorems represent all major areas of mathematics: number theory, combinatorics, analysis, algebra, geometry and topology, probability and statistics, algorithms and complexity, and logic and set theory. The presentation is self-contained with context, background and necessary definitions provided for each theorem, all without sacrificing mathematical rigour. Where feasible, brief indications of the main ideas of a proof are given. Rigorous yet accessible, this book presents an array of breathtaking recent advances in mathematics. It is written for everyone with a background in mathematics, from inquisitive university students to mathematicians curious about recent achievements in areas beyond their own.
Five Equations That Changed the World
Author: Dr. Michael Guillen
Publisher: Hachette Books
ISBN: 1401304915
Category : Mathematics
Languages : en
Pages : 239
Book Description
A Publishers Weekly best book of 1995! Dr. Michael Guillen, known to millions as the science editor of ABC's Good Morning America, tells the fascinating stories behind five mathematical equations. As a regular contributor to daytime's most popular morning news show and an instructor at Harvard University, Dr. Michael Guillen has earned the respect of millions as a clear and entertaining guide to the exhilarating world of science and mathematics. Now Dr. Guillen unravels the equations that have led to the inventions and events that characterize the modern world, one of which -- Albert Einstein's famous energy equation, E=mc2 -- enabled the creation of the nuclear bomb. Also revealed are the mathematical foundations for the moon landing, airplane travel, the electric generator -- and even life itself. Praised by Publishers Weekly as "a wholly accessible, beautifully written exploration of the potent mathematical imagination," and named a Best Nonfiction Book of 1995, the stories behind The Five Equations That Changed the World, as told by Dr. Guillen, are not only chronicles of science, but also gripping dramas of jealousy, fame, war, and discovery.
Publisher: Hachette Books
ISBN: 1401304915
Category : Mathematics
Languages : en
Pages : 239
Book Description
A Publishers Weekly best book of 1995! Dr. Michael Guillen, known to millions as the science editor of ABC's Good Morning America, tells the fascinating stories behind five mathematical equations. As a regular contributor to daytime's most popular morning news show and an instructor at Harvard University, Dr. Michael Guillen has earned the respect of millions as a clear and entertaining guide to the exhilarating world of science and mathematics. Now Dr. Guillen unravels the equations that have led to the inventions and events that characterize the modern world, one of which -- Albert Einstein's famous energy equation, E=mc2 -- enabled the creation of the nuclear bomb. Also revealed are the mathematical foundations for the moon landing, airplane travel, the electric generator -- and even life itself. Praised by Publishers Weekly as "a wholly accessible, beautifully written exploration of the potent mathematical imagination," and named a Best Nonfiction Book of 1995, the stories behind The Five Equations That Changed the World, as told by Dr. Guillen, are not only chronicles of science, but also gripping dramas of jealousy, fame, war, and discovery.
Good Math
Author: Mark C. Chu-Carroll
Publisher: Pragmatic Bookshelf
ISBN: 168050360X
Category : Computers
Languages : en
Pages : 261
Book Description
Mathematics is beautiful--and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you've ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of computer on your desk, this is the book for you. Why do Roman numerals persist? How do we know that some infinities are larger than others? And how can we know for certain a program will ever finish? In this fast-paced tour of modern and not-so-modern math, computer scientist Mark Chu-Carroll explores some of the greatest breakthroughs and disappointments of more than two thousand years of mathematical thought. There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular "Good Math" blog, you'll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird. Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing. If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark's book will both entertain and enlighten you.
Publisher: Pragmatic Bookshelf
ISBN: 168050360X
Category : Computers
Languages : en
Pages : 261
Book Description
Mathematics is beautiful--and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you've ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of computer on your desk, this is the book for you. Why do Roman numerals persist? How do we know that some infinities are larger than others? And how can we know for certain a program will ever finish? In this fast-paced tour of modern and not-so-modern math, computer scientist Mark Chu-Carroll explores some of the greatest breakthroughs and disappointments of more than two thousand years of mathematical thought. There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular "Good Math" blog, you'll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird. Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing. If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark's book will both entertain and enlighten you.