Graphs, Algorithms, and Optimization, Second Edition

Graphs, Algorithms, and Optimization, Second Edition PDF Author: William Kocay
Publisher: CRC Press
ISBN: 1482251256
Category : Mathematics
Languages : en
Pages : 430

Book Description
The second edition of this popular book presents the theory of graphs from an algorithmic viewpoint. The authors present the graph theory in a rigorous, but informal style and cover most of the main areas of graph theory. The ideas of surface topology are presented from an intuitive point of view. We have also included a discussion on linear programming that emphasizes problems in graph theory. The text is suitable for students in computer science or mathematics programs. ?

Graphs, Algorithms, and Optimization

Graphs, Algorithms, and Optimization PDF Author: William Kocay
Publisher: CRC Press
ISBN: 135198912X
Category : Mathematics
Languages : en
Pages : 504

Book Description
Graph theory offers a rich source of problems and techniques for programming and data structure development, as well as for understanding computing theory, including NP-Completeness and polynomial reduction. A comprehensive text, Graphs, Algorithms, and Optimization features clear exposition on modern algorithmic graph theory presented in a rigorous yet approachable way. The book covers major areas of graph theory including discrete optimization and its connection to graph algorithms. The authors explore surface topology from an intuitive point of view and include detailed discussions on linear programming that emphasize graph theory problems useful in mathematics and computer science. Many algorithms are provided along with the data structure needed to program the algorithms efficiently. The book also provides coverage on algorithm complexity and efficiency, NP-completeness, linear optimization, and linear programming and its relationship to graph algorithms. Written in an accessible and informal style, this work covers nearly all areas of graph theory. Graphs, Algorithms, and Optimization provides a modern discussion of graph theory applicable to mathematics, computer science, and crossover applications.

Graphs, Algorithms, and Optimization

Graphs, Algorithms, and Optimization PDF Author: William Kocay
Publisher: CRC Press
ISBN: 1482251183
Category : Mathematics
Languages : en
Pages : 566

Book Description
The second edition of this popular book presents the theory of graphs from an algorithmic viewpoint. The authors present the graph theory in a rigorous, but informal style and cover most of the main areas of graph theory. The ideas of surface topology are presented from an intuitive point of view. We have also included a discussion on linear programming that emphasizes problems in graph theory. The text is suitable for students in computer science or mathematics programs.

Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Handbook of Graph Theory, Combinatorial Optimization, and Algorithms PDF Author: Krishnaiyan "KT" Thulasiraman
Publisher: CRC Press
ISBN: 1420011073
Category : Computers
Languages : en
Pages : 1217

Book Description
The fusion between graph theory and combinatorial optimization has led to theoretically profound and practically useful algorithms, yet there is no book that currently covers both areas together. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a unified, comprehensive treatment of both graph theory and c

Graphs and Algorithms

Graphs and Algorithms PDF Author: Michel Gondran
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 680

Book Description
Generalities about graphs. The shortest path problem in a graph. Path algebras. Trees and arborescences. Flows and transportation networks. Flows with gains. Multicommodity flows. Matchings and b-matchings. Eulerian and hamiltonian walks. Matroids. Non-polynomial problems. Branch and bound algorithms. Approximate algorithms. Linear programming. Integer linear programming. Lagrangean relaxation and solving the dual problem. Dynamic programming. Minimum ratio problems.

Algorithms on Trees and Graphs

Algorithms on Trees and Graphs PDF Author: Gabriel Valiente
Publisher: Springer Science & Business Media
ISBN: 366204921X
Category : Computers
Languages : en
Pages : 492

Book Description
Graph algorithms is a well-established subject in mathematics and computer science. Beyond classical application fields, such as approximation, combinatorial optimization, graphics, and operations research, graph algorithms have recently attracted increased attention from computational molecular biology and computational chemistry. Centered around the fundamental issue of graph isomorphism, this text goes beyond classical graph problems of shortest paths, spanning trees, flows in networks, and matchings in bipartite graphs. Advanced algorithmic results and techniques of practical relevance are presented in a coherent and consolidated way. This book introduces graph algorithms on an intuitive basis followed by a detailed exposition in a literate programming style, with correctness proofs as well as worst-case analyses. Furthermore, full C++ implementations of all algorithms presented are given using the LEDA library of efficient data structures and algorithms.

Optimization Algorithms for Networks and Graphs

Optimization Algorithms for Networks and Graphs PDF Author: James Evans
Publisher: CRC Press
ISBN: 1351426680
Category : Mathematics
Languages : en
Pages : 481

Book Description
A revised and expanded advanced-undergraduate/graduate text (first ed., 1978) about optimization algorithms for problems that can be formulated on graphs and networks. This edition provides many new applications and algorithms while maintaining the classic foundations on which contemporary algorithm

Algorithms for Optimization

Algorithms for Optimization PDF Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262039427
Category : Computers
Languages : en
Pages : 521

Book Description
A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization PDF Author: Martin Grötschel
Publisher: Springer Science & Business Media
ISBN: 3642978819
Category : Mathematics
Languages : en
Pages : 374

Book Description
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.

Graph Algorithms in the Language of Linear Algebra

Graph Algorithms in the Language of Linear Algebra PDF Author: Jeremy Kepner
Publisher: SIAM
ISBN: 9780898719918
Category : Mathematics
Languages : en
Pages : 388

Book Description
The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.