Graphene Based Biomolecular Electronic Devices PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Graphene Based Biomolecular Electronic Devices PDF full book. Access full book title Graphene Based Biomolecular Electronic Devices by Bansi D. Malhotra. Download full books in PDF and EPUB format.

Graphene Based Biomolecular Electronic Devices

Graphene Based Biomolecular Electronic Devices PDF Author: Bansi D. Malhotra
Publisher: Elsevier
ISBN: 0128215429
Category : Technology & Engineering
Languages : en
Pages : 264

Book Description
Graphene Based Biomolecular Electronic Devices outlines the fundamental concepts related to graphene and electronics, along with a description of various advanced and emerging applications of graphene-based bioelectronics. The book includes coverage of biosensors, energy storage devices such as biofuel cells, stretchable and flexible electronics, drug delivery systems, tissue engineering, and 3D printed graphene in bioelectronics. Taking an interdisciplinary approach, it explores the synergy produced due to charge transfer between biomolecules and graphene and will help the reader understand the promising bioelectronic applications of graphene-based devices. Graphene has applications in semiconductor electronics, replacing the use of traditional silicon-based devices due to its semi-metallic nature and tuneable energy band gap properties. The tuning of electron transfer with redox properties of biomolecules could potentially lead to the development of miniaturized bioelectronic devices. Thus, graphene, with its unique sensing characteristics, has emerged as an attractive material to produce biomolecular electronic devices. Explains advanced and emerging techniques for creating graphene-based bioelectronic devices Outlines the fundamental concepts of graphene-based bio-integrated systems Addresses the major challenges in creating graphene-based bioelectronic devices on a mass scale

Graphene Based Biomolecular Electronic Devices

Graphene Based Biomolecular Electronic Devices PDF Author: Bansi D. Malhotra
Publisher: Elsevier
ISBN: 0128215429
Category : Technology & Engineering
Languages : en
Pages : 264

Book Description
Graphene Based Biomolecular Electronic Devices outlines the fundamental concepts related to graphene and electronics, along with a description of various advanced and emerging applications of graphene-based bioelectronics. The book includes coverage of biosensors, energy storage devices such as biofuel cells, stretchable and flexible electronics, drug delivery systems, tissue engineering, and 3D printed graphene in bioelectronics. Taking an interdisciplinary approach, it explores the synergy produced due to charge transfer between biomolecules and graphene and will help the reader understand the promising bioelectronic applications of graphene-based devices. Graphene has applications in semiconductor electronics, replacing the use of traditional silicon-based devices due to its semi-metallic nature and tuneable energy band gap properties. The tuning of electron transfer with redox properties of biomolecules could potentially lead to the development of miniaturized bioelectronic devices. Thus, graphene, with its unique sensing characteristics, has emerged as an attractive material to produce biomolecular electronic devices. Explains advanced and emerging techniques for creating graphene-based bioelectronic devices Outlines the fundamental concepts of graphene-based bio-integrated systems Addresses the major challenges in creating graphene-based bioelectronic devices on a mass scale

Graphene

Graphene PDF Author: George Wypych
Publisher: Elsevier
ISBN: 1774670372
Category : Technology & Engineering
Languages : en
Pages : 387

Book Description
This new edition of Graphene: Important Results and Applications provides a succinct overview of this innovative material, its history and development, applications, future prospects, and challenges. This 2nd edition has been updated and expanded to include all the latest developments. It covers production of graphene and its derivatives, commercial manufacture of graphene, research results and data on its properties, graphene dispersion, chemical modification, and cutting-edge applications. Eleven groups of production methods of graphene and its derivatives are discussed at length, providing how-to-do and what-to-expect analysis and comparison of potential properties of the resultant products. Also included are ideas for new product development and possible improvement of existing products, as is insight into the unique nature of graphene and its types, including morphology and thickness, mechanical properties, electrical conductivity, elastic properties of 2D and 3D structures, and more. Provides an extensive account of the latest research in methods of production of graphene and its derivatives Covers commercial manufacture, research results, property data, and cutting-edge applications Discusses methods of incorporation in graphene products, chemical modifications, and projected future uses

Graphene Field-Effect Transistors

Graphene Field-Effect Transistors PDF Author: Omar Azzaroni
Publisher: John Wiley & Sons
ISBN: 3527349901
Category : Technology & Engineering
Languages : en
Pages : 453

Book Description
Graphene Field-Effect Transistors In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications. Graphene Field-Effect Transistors includes information on: Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.

Biomolecular Electronics

Biomolecular Electronics PDF Author: Paolo Facci
Publisher: William Andrew
ISBN: 1455731528
Category : Technology & Engineering
Languages : en
Pages : 257

Book Description
Biomolecular Electronics – the electrical control of biological phenomena – is a scientific challenge that, once fully realized, will find a wide range of applications from electronics and computing to medicine and therapeutic techniques.This new arena of biomolecular electronics is approached using familiar concepts from many areas such as electrochemistry, device electronics and some mechanisms of gene expression level control. Practical techniques are explored by which electrical and electronic means can be used to control biological reactions and processes. Also, the current and future applications for this new and expanding field are discussed.This book is aimed at scientists and engineers involved in both research and commercial applications across fields including bioelectronics, bionanotechnology, electrochemistry and nanomedicine – providing a state-of-the-art survey of what's going on at the boundary between biology and electronic technology at the micro- and nano- scales, along with a suggestive insight into future possible developments. Demystifies the science and applications of electrically-driven biological reactions Explains how the techniques of bioelectronics and electrochemistry can be deployed as biological control technologies Provides applications information for diverse areas from bio-electrochemistry to electrical control of gene expression levels

Nanobiosensors for Biomolecular Targeting

Nanobiosensors for Biomolecular Targeting PDF Author: Subash C.B. Gopinath
Publisher: Elsevier
ISBN: 0128139013
Category : Technology & Engineering
Languages : en
Pages : 352

Book Description
Nanobiosensors for Bio-molecular Targeting presents the latest analytical methods for the detection of different substances in the range of small molecules to whole cells, exploring the advantages and disadvantages of each method. Biosensors combine the component of biological origin and physicochemical detector to show the presence of analytes in a given sample. The use of bionanotechnology has led to a significant advancement in the progression of nanobiosensors and has been effectively used for biomedical diagnosis. Explains the detection techniques used by nanosensors, exploring the strengths and weaknesses of each for the detection of disease Shows how biosensors are used to detect various types of biomolecules Demonstrates how the use of nanomaterials makes biosensors both cheaper and more efficient

Graphene Electronic Device Based Biosensors and Chemical Sensors

Graphene Electronic Device Based Biosensors and Chemical Sensors PDF Author: Shan Jiang
Publisher:
ISBN:
Category :
Languages : en
Pages : 89

Book Description
Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through π-π stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems. In the last part of my thesis, I demonstrate the construction of few-layer molybdenum disulfide (MoS2) based field-effect transistor (FET) device for highly sensitive detection of Hg2+ ion in aquatic solutions. The detection of mercury in aquatic environment is of great importance because mercury is an environment pollutant with severe toxicity. High binding affinity between mercury and sulfur makes MoS2 a promising candidate for mercury sensing. Our studies demonstrate that MoS2 sensors can selectively respond to Hg2+ ion with a detection limit of 30 pM. This MoS2 FET based mercury sensor promises great potential for highly sensitive, label-free, low-cost, fast and non-aggressive detection of mercury in aquatic environment.

Green Electronics

Green Electronics PDF Author: Cristian Ravariu
Publisher: BoD – Books on Demand
ISBN: 1789233046
Category : Technology & Engineering
Languages : en
Pages : 254

Book Description
The Green Electronics book is intended to stimulate people's thinking toward the new concepts of an environment-friendly electronics - the main challenge in the future. The book offers multiple solutions to push the classical electronic industry toward green concepts, aided by nanotechnologies, with revolutionary features that provide low power consumption in electronics, use biomaterials for integrated structures, and include environmental monitoring tools. Based on organic semiconductors/insulators without toxic precursors, green electronic technologies launched promising devices like OLED, OTFT, or nano-core-shell transistors. The Green Electronics book successfully presents the recent directions collected worldwide and leaves free space for continuing year by year with new subtopics.

Handbook of Graphene, Volume 6

Handbook of Graphene, Volume 6 PDF Author: Barbara Palys
Publisher: John Wiley & Sons
ISBN: 1119469767
Category : Technology & Engineering
Languages : en
Pages : 961

Book Description
The sixth volume in a series of handbooks on graphene research and applications The Handbook of Graphene, Volume 6: Biosensors and Advanced Sensors discusses the unique benefits that the discovery of graphene has brought to the sensing and biosensing sectors. It examines graphene's use in leading-edge technology applications and the development of a variety of graphene-based sensors. The handbook looks at how graphene can be used as an electrode, substrate, or transducer in sensor design. Graphene-based sensor detection has achieved up to femto-levels, with performances delivering the advantages of greater selectivity, sensitivity, and stability.

Graphene-Based Materials Functionalization with Natural Polymeric Biomolecules

Graphene-Based Materials Functionalization with Natural Polymeric Biomolecules PDF Author: Edgar Jimenez-Cervantes Amieva
Publisher:
ISBN:
Category : Technology
Languages : en
Pages :

Book Description


Graphene Science Handbook

Graphene Science Handbook PDF Author: Mahmood Aliofkhazraei
Publisher: CRC Press
ISBN: 146659134X
Category : Science
Languages : en
Pages : 480

Book Description
Explore the Practical Applications and Promising Developments of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic