Granular-Relational Data Mining PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Granular-Relational Data Mining PDF full book. Access full book title Granular-Relational Data Mining by Piotr Hońko. Download full books in PDF and EPUB format.

Granular-Relational Data Mining

Granular-Relational Data Mining PDF Author: Piotr Hońko
Publisher: Springer
ISBN: 3319527517
Category : Technology & Engineering
Languages : en
Pages : 130

Book Description
This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining relational data. Lastly, the book offers all readers interested in computational intelligence in the broader sense the opportunity to deepen their understanding of the newly emerging field granular-relational data mining.

Granular-Relational Data Mining

Granular-Relational Data Mining PDF Author: Piotr Hońko
Publisher: Springer
ISBN: 3319527517
Category : Technology & Engineering
Languages : en
Pages : 130

Book Description
This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining relational data. Lastly, the book offers all readers interested in computational intelligence in the broader sense the opportunity to deepen their understanding of the newly emerging field granular-relational data mining.

Methodologies for Knowledge Discovery and Data Mining

Methodologies for Knowledge Discovery and Data Mining PDF Author: Ning Zhong
Publisher: Springer Science & Business Media
ISBN: 3540658661
Category : Computers
Languages : en
Pages : 566

Book Description
This book constitutes the refereed proceedings of the Third Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD '99, held in Beijing, China, in April 1999. The 29 revised full papers presented together with 37 short papers were carefully selected from a total of 158 submissions. The book is divided into sections on emerging KDD technology; association rules; feature selection and generation; mining in semi-unstructured data; interestingness, surprisingness, and exceptions; rough sets, fuzzy logic, and neural networks; induction, classification, and clustering; visualization; causal models and graph-based methods; agent-based and distributed data mining; and advanced topics and new methodologies.

Rough – Granular Computing in Knowledge Discovery and Data Mining

Rough – Granular Computing in Knowledge Discovery and Data Mining PDF Author: J. Stepaniuk
Publisher: Springer
ISBN: 3540708014
Category : Computers
Languages : en
Pages : 162

Book Description
This book covers methods based on a combination of granular computing, rough sets, and knowledge discovery in data mining (KDD). The discussion of KDD foundations based on the rough set approach and granular computing feature illustrative applications.

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing PDF Author: Guoyin Wang
Publisher: Springer Science & Business Media
ISBN: 3540140409
Category : Computers
Languages : en
Pages : 758

Book Description
This book constitutes the refereed proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2003, held in Chongqing, China in May 2003. The 39 revised full papers and 75 revised short papers presented together with 2 invited keynote papers and 11 invited plenary papers were carefully reviewed and selected from a total of 245 submissions. The papers are organized in topical sections on rough sets foundations and methods; fuzzy sets and systems; granular computing; neural networks and evolutionary computing; data mining, machine learning, and pattern recognition; logics and reasoning; multi-agent systems; and Web intelligence and intelligent systems.

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing PDF Author: Dominik Ślęzak
Publisher: Springer Science & Business Media
ISBN: 3540286535
Category : Computers
Languages : en
Pages : 764

Book Description
The two volume set LNAI 3641 and LNAI 3642 constitutes the refereed proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, held in Regina, Canada in August/September 2005. The 119 revised full papers presented were carefully reviewed and selected from a total of 277 submissions. They comprise the two volumes together with 6 invited papers, 22 approved workshop papers, and 5 special section papers that all were carefully selected and thoroughly revised. The first volume includes 75 contributions related to rough set approximations, rough-algebraic foundations, feature selection and reduction, reasoning in information systems, rough-probabilistic approaches, rough-fuzzy hybridization, fuzzy methods in data analysis, evolutionary computing, machine learning, approximate and uncertain reasoning, probabilistic network models, spatial and temporal reasoning, non-standard logics, and granular computing. The second volume contains 77 contributions and deals with rough set software, data mining, hybrid and hierarchical methods, information retrieval, image recognition and processing, multimedia applications, medical applications, web content analysis, business and industrial applications, the approved workshop papers and the papers accepted for a special session on intelligent and sapient systems.

Time Granularities in Databases, Data Mining, and Temporal Reasoning

Time Granularities in Databases, Data Mining, and Temporal Reasoning PDF Author: Claudio Bettini
Publisher: Springer Science & Business Media
ISBN: 3662042282
Category : Computers
Languages : en
Pages : 232

Book Description
Calendar and time units and specialized units, such as business days and academic years, play a major role in a wide range of information system applications. System support for reasoning about these units, called granularities, is important for the efficient design, use, and implementation of such applications. This book deals with several aspects of temporal information and provides a unifying model for granularities. Practitioners can learn about critical aspects that must be taken into account when designing and implementing databases supporting temporal information.

Granular Computing

Granular Computing PDF Author: Witold Pedrycz
Publisher: Physica
ISBN: 3790818232
Category : Computers
Languages : en
Pages : 403

Book Description
Granular Computing is concerned with constructing and processing carried out at the level of information granules. Using information granules, we comprehend the world and interact with it, no matter which intelligent endeavor this may involve. The landscape of granular computing is immensely rich and involves set theory (interval mathematics), fuzzy sets, rough sets, random sets linked together in a highly synergetic environment. This volume is a first comprehensive treatment of this emerging paradigm and embraces its fundamentals, underlying methodological framework, and a sound algorithmic environment. The panoply of applications covered includes system identification, telecommunications, linguistics and music processing. Written by experts in the field, this volume will appeal to all developing intelligent systems, either working at the methodological level or interested in detailed system realization.

Advances in Computational Intelligence, Part I

Advances in Computational Intelligence, Part I PDF Author: Salvatore Greco
Publisher: Springer
ISBN: 364231709X
Category : Computers
Languages : en
Pages : 674

Book Description
These four volumes (CCIS 297, 298, 299, 300) constitute the proceedings of the 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2012, held in Catania, Italy, in July 2012. The 258 revised full papers presented together with six invited talks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on fuzzy machine learning and on-line modeling; computing with words and decision making; soft computing in computer vision; rough sets and complex data analysis: theory and applications; intelligent databases and information system; information fusion systems; philosophical and methodological aspects of soft computing; basic issues in rough sets; 40th anniversary of the measures of fuziness; SPS11 uncertainty in profiling systems and applications; handling uncertainty with copulas; formal methods to deal with uncertainty of many-valued events; linguistic summarization and description of data; fuzzy implications: theory and applications; sensing and data mining for teaching and learning; theory and applications of intuitionistic fuzzy sets; approximate aspects of data mining and database analytics; fuzzy numbers and their applications; information processing and management of uncertainty in knowledge-based systems; aggregation functions; imprecise probabilities; probabilistic graphical models with imprecision: theory and applications; belief function theory: basics and/or applications; fuzzy uncertainty in economics and business; new trends in De Finetti's approach; fuzzy measures and integrals; multicriteria decision making; uncertainty in privacy and security; uncertainty in the spirit of Pietro Benvenuti; coopetition; game theory; probabilistic approach.

Object Databases

Object Databases PDF Author: Moira C. Norrie
Publisher: Springer
ISBN: 3642146813
Category : Computers
Languages : en
Pages : 176

Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 2nd International Conference on Object Databases, ICOODB 2009, held in Zurich, Switzerland, in July 2009. The 6 revised full papers presented together with 3 invited papers were carefully reviewed and selected from the presentations at the research track during two rounds of reviewing and improvement. These papers address a wide range of issues related to object databases, including topics such as applications, methodologies, design tools, frameworks and standards as well as core object database technologies.

Granular Neural Networks, Pattern Recognition and Bioinformatics

Granular Neural Networks, Pattern Recognition and Bioinformatics PDF Author: Sankar K. Pal
Publisher: Springer
ISBN: 331957115X
Category : Technology & Engineering
Languages : en
Pages : 241

Book Description
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinformatics applications. The book is recommended for both students and practitioners working in computer science, electrical engineering, data science, system design, pattern recognition, image analysis, neural computing, social network analysis, big data analytics, computational biology and soft computing.