Author: Abhik Roychoudhury
Publisher: Morgan Kaufmann
ISBN: 0080921256
Category : Computers
Languages : en
Pages : 267
Book Description
Modern embedded systems require high performance, low cost and low power consumption. Such systems typically consist of a heterogeneous collection of processors, specialized memory subsystems, and partially programmable or fixed-function components. This heterogeneity, coupled with issues such as hardware/software partitioning, mapping, scheduling, etc., leads to a large number of design possibilities, making performance debugging and validation of such systems a difficult problem. Embedded systems are used to control safety critical applications such as flight control, automotive electronics and healthcare monitoring. Clearly, developing reliable software/systems for such applications is of utmost importance. This book describes a host of debugging and verification methods which can help to achieve this goal. - Covers the major abstraction levels of embedded systems design, starting from software analysis and micro-architectural modeling, to modeling of resource sharing and communication at the system level - Integrates formal techniques of validation for hardware/software with debugging and validation of embedded system design flows - Includes practical case studies to answer the questions: does a design meet its requirements, if not, then which parts of the system are responsible for the violation, and once they are identified, then how should the design be suitably modified?
Embedded Systems and Software Validation
Author: Abhik Roychoudhury
Publisher: Morgan Kaufmann
ISBN: 0080921256
Category : Computers
Languages : en
Pages : 267
Book Description
Modern embedded systems require high performance, low cost and low power consumption. Such systems typically consist of a heterogeneous collection of processors, specialized memory subsystems, and partially programmable or fixed-function components. This heterogeneity, coupled with issues such as hardware/software partitioning, mapping, scheduling, etc., leads to a large number of design possibilities, making performance debugging and validation of such systems a difficult problem. Embedded systems are used to control safety critical applications such as flight control, automotive electronics and healthcare monitoring. Clearly, developing reliable software/systems for such applications is of utmost importance. This book describes a host of debugging and verification methods which can help to achieve this goal. - Covers the major abstraction levels of embedded systems design, starting from software analysis and micro-architectural modeling, to modeling of resource sharing and communication at the system level - Integrates formal techniques of validation for hardware/software with debugging and validation of embedded system design flows - Includes practical case studies to answer the questions: does a design meet its requirements, if not, then which parts of the system are responsible for the violation, and once they are identified, then how should the design be suitably modified?
Publisher: Morgan Kaufmann
ISBN: 0080921256
Category : Computers
Languages : en
Pages : 267
Book Description
Modern embedded systems require high performance, low cost and low power consumption. Such systems typically consist of a heterogeneous collection of processors, specialized memory subsystems, and partially programmable or fixed-function components. This heterogeneity, coupled with issues such as hardware/software partitioning, mapping, scheduling, etc., leads to a large number of design possibilities, making performance debugging and validation of such systems a difficult problem. Embedded systems are used to control safety critical applications such as flight control, automotive electronics and healthcare monitoring. Clearly, developing reliable software/systems for such applications is of utmost importance. This book describes a host of debugging and verification methods which can help to achieve this goal. - Covers the major abstraction levels of embedded systems design, starting from software analysis and micro-architectural modeling, to modeling of resource sharing and communication at the system level - Integrates formal techniques of validation for hardware/software with debugging and validation of embedded system design flows - Includes practical case studies to answer the questions: does a design meet its requirements, if not, then which parts of the system are responsible for the violation, and once they are identified, then how should the design be suitably modified?
Distributed and Parallel Embedded Systems
Author: Franz J. Rammig
Publisher: Springer
ISBN: 0387355707
Category : Computers
Languages : en
Pages : 238
Book Description
Embedded systems are becoming one of the major driving forces in computer science. Furthermore, it is the impact of embedded information technology that dictates the pace in most engineering domains. Nearly all technical products above a certain level of complexity are not only controlled but increasingly even dominated by their embedded computer systems. Traditionally, such embedded control systems have been implemented in a monolithic, centralized way. Recently, distributed solutions are gaining increasing importance. In this approach, the control task is carried out by a number of controllers distributed over the entire system and connected by some interconnect network, like fieldbuses. Such a distributed embedded system may consist of a few controllers up to several hundred, as in today's top-range automobiles. Distribution and parallelism in embedded systems design increase the engineering challenges and require new development methods and tools. This book is the result of the International Workshop on Distributed and Parallel Embedded Systems (DIPES'98), organized by the International Federation for Information Processing (IFIP) Working Groups 10.3 (Concurrent Systems) and 10.5 (Design and Engineering of Electronic Systems). The workshop took place in October 1998 in Schloss Eringerfeld, near Paderborn, Germany, and the resulting book reflects the most recent points of view of experts from Brazil, Finland, France, Germany, Italy, Portugal, and the USA. The book is organized in six chapters: `Formalisms for Embedded System Design': IP-based system design and various approaches to multi-language formalisms. `Synthesis from Synchronous/Asynchronous Specification': Synthesis techniques based on Message Sequence Charts (MSC), StateCharts, and Predicate/Transition Nets. `Partitioning and Load-Balancing': Application in simulation models and target systems. `Verification and Validation': Formal techniques for precise verification and more pragmatic approaches to validation. `Design Environments' for distributed embedded systems and their impact on the industrial state of the art. `Object Oriented Approaches': Impact of OO-techniques on distributed embedded systems. £/LIST£ This volume will be essential reading for computer science researchers and application developers.
Publisher: Springer
ISBN: 0387355707
Category : Computers
Languages : en
Pages : 238
Book Description
Embedded systems are becoming one of the major driving forces in computer science. Furthermore, it is the impact of embedded information technology that dictates the pace in most engineering domains. Nearly all technical products above a certain level of complexity are not only controlled but increasingly even dominated by their embedded computer systems. Traditionally, such embedded control systems have been implemented in a monolithic, centralized way. Recently, distributed solutions are gaining increasing importance. In this approach, the control task is carried out by a number of controllers distributed over the entire system and connected by some interconnect network, like fieldbuses. Such a distributed embedded system may consist of a few controllers up to several hundred, as in today's top-range automobiles. Distribution and parallelism in embedded systems design increase the engineering challenges and require new development methods and tools. This book is the result of the International Workshop on Distributed and Parallel Embedded Systems (DIPES'98), organized by the International Federation for Information Processing (IFIP) Working Groups 10.3 (Concurrent Systems) and 10.5 (Design and Engineering of Electronic Systems). The workshop took place in October 1998 in Schloss Eringerfeld, near Paderborn, Germany, and the resulting book reflects the most recent points of view of experts from Brazil, Finland, France, Germany, Italy, Portugal, and the USA. The book is organized in six chapters: `Formalisms for Embedded System Design': IP-based system design and various approaches to multi-language formalisms. `Synthesis from Synchronous/Asynchronous Specification': Synthesis techniques based on Message Sequence Charts (MSC), StateCharts, and Predicate/Transition Nets. `Partitioning and Load-Balancing': Application in simulation models and target systems. `Verification and Validation': Formal techniques for precise verification and more pragmatic approaches to validation. `Design Environments' for distributed embedded systems and their impact on the industrial state of the art. `Object Oriented Approaches': Impact of OO-techniques on distributed embedded systems. £/LIST£ This volume will be essential reading for computer science researchers and application developers.
Embedded System Design
Author: Peter Marwedel
Publisher: Springer Science & Business Media
ISBN: 9400702574
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.
Publisher: Springer Science & Business Media
ISBN: 9400702574
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.
Reconfigurable Embedded Control Systems: Applications for Flexibility and Agility
Author: Khalgui, Mohamed
Publisher: IGI Global
ISBN: 1609600886
Category : Computers
Languages : en
Pages : 651
Book Description
"This book addresses the development of reconfigurable embedded control systems and describes various problems in this important research area, which include static and dynamic (manual or automatic) reconfigurations, multi-agent architectures, modeling and verification, component-based approaches, architecture description languages, distributed reconfigurable architectures, real-time and low power scheduling, execution models, and the implementation of such systems"--
Publisher: IGI Global
ISBN: 1609600886
Category : Computers
Languages : en
Pages : 651
Book Description
"This book addresses the development of reconfigurable embedded control systems and describes various problems in this important research area, which include static and dynamic (manual or automatic) reconfigurations, multi-agent architectures, modeling and verification, component-based approaches, architecture description languages, distributed reconfigurable architectures, real-time and low power scheduling, execution models, and the implementation of such systems"--
Embedded System Design
Author: Daniel D. Gajski
Publisher: Springer Science & Business Media
ISBN: 1441905049
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
Embedded System Design: Modeling, Synthesis and Verification introduces a model-based approach to system level design. It presents modeling techniques for both computation and communication at different levels of abstraction, such as specification, transaction level and cycle-accurate level. It discusses synthesis methods for system level architectures, embedded software and hardware components. Using these methods, designers can develop applications with high level models, which are automatically translatable to low level implementations. This book, furthermore, describes simulation-based and formal verification methods that are essential for achieving design confidence. The book concludes with an overview of existing tools along with a design case study outlining the practice of embedded system design. Specifically, this book addresses the following topics in detail: . System modeling at different abstraction levels . Model-based system design . Hardware/Software codesign . Software and Hardware component synthesis . System verification This book is for groups within the embedded system community: students in courses on embedded systems, embedded application developers, system designers and managers, CAD tool developers, design automation, and system engineering.
Publisher: Springer Science & Business Media
ISBN: 1441905049
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
Embedded System Design: Modeling, Synthesis and Verification introduces a model-based approach to system level design. It presents modeling techniques for both computation and communication at different levels of abstraction, such as specification, transaction level and cycle-accurate level. It discusses synthesis methods for system level architectures, embedded software and hardware components. Using these methods, designers can develop applications with high level models, which are automatically translatable to low level implementations. This book, furthermore, describes simulation-based and formal verification methods that are essential for achieving design confidence. The book concludes with an overview of existing tools along with a design case study outlining the practice of embedded system design. Specifically, this book addresses the following topics in detail: . System modeling at different abstraction levels . Model-based system design . Hardware/Software codesign . Software and Hardware component synthesis . System verification This book is for groups within the embedded system community: students in courses on embedded systems, embedded application developers, system designers and managers, CAD tool developers, design automation, and system engineering.
Introduction to Embedded Systems, Second Edition
Author: Edward Ashford Lee
Publisher: MIT Press
ISBN: 0262340526
Category : Computers
Languages : en
Pages : 562
Book Description
An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.
Publisher: MIT Press
ISBN: 0262340526
Category : Computers
Languages : en
Pages : 562
Book Description
An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.
Better Embedded System Software
Author: Philip Koopman
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 386
Book Description
A classic book for professional embedded system designers, now in an affordable paperback edition. This book distills the experience of more than 90 design reviews on real embedded systems into a set of bite-size lessons learned in the areas of software development process, requirements, architecture, design, implementation, verification & validation, and critical system properties. This is a concept book rather than a cut-and-paste the code book.Each chapter describes an area that tends to be a problem in embedded system design, symptoms that tend to indicate you need to make changes, the risks of not fixing problems in this area, and concrete ways to make your embedded system software better. Each of the 29 chapters is self-sufficient, permitting developers with a busy schedule to cherry-pick the best ideas to make their systems better right away.If you are relatively new to the area but have already learned the basics, this book will be an invaluable asset for taking your game to the next level. If you are experienced, this book provides a way to fill in any gaps. Once you have mastered this material, the book will serve as a source of reminders to make sure you haven't forgotten anything as you plan your next project. This is version 1.1 with some minor revisions from the 2010 hardcover edition. This is a paperback print-on-demand edition produced by Amazon.
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 386
Book Description
A classic book for professional embedded system designers, now in an affordable paperback edition. This book distills the experience of more than 90 design reviews on real embedded systems into a set of bite-size lessons learned in the areas of software development process, requirements, architecture, design, implementation, verification & validation, and critical system properties. This is a concept book rather than a cut-and-paste the code book.Each chapter describes an area that tends to be a problem in embedded system design, symptoms that tend to indicate you need to make changes, the risks of not fixing problems in this area, and concrete ways to make your embedded system software better. Each of the 29 chapters is self-sufficient, permitting developers with a busy schedule to cherry-pick the best ideas to make their systems better right away.If you are relatively new to the area but have already learned the basics, this book will be an invaluable asset for taking your game to the next level. If you are experienced, this book provides a way to fill in any gaps. Once you have mastered this material, the book will serve as a source of reminders to make sure you haven't forgotten anything as you plan your next project. This is version 1.1 with some minor revisions from the 2010 hardcover edition. This is a paperback print-on-demand edition produced by Amazon.
Formal Description Techniques and Protocol Specification, Testing and Verification
Author: Stan Budkowski
Publisher: Springer
ISBN: 0387353941
Category : Technology & Engineering
Languages : en
Pages : 462
Book Description
Formal Description Techniques and Protocol Specification, Testing and Verification addresses formal description techniques (FDTs) applicable to distributed systems and communication protocols. It aims to present the state of the art in theory, application, tools and industrialization of FDTs. Among the important features presented are: FDT-based system and protocol engineering; FDT-application to distributed systems; Protocol engineering; Practical experience and case studies. Formal Description Techniques and Protocol Specification, Testing and Verification comprises the proceedings of the Joint International Conference on Formal Description Techniques for Distributed Systems and Communication Protocols and Protocol Specification, Testing and Verification, sponsored by the International Federation for Information Processing, held in November 1998, Paris, France. Formal Description Techniques and Protocol Specification, Testing and Verification is suitable as a secondary text for a graduate-level course on Distributed Systems or Communications, and as a reference for researchers and practitioners in industry.
Publisher: Springer
ISBN: 0387353941
Category : Technology & Engineering
Languages : en
Pages : 462
Book Description
Formal Description Techniques and Protocol Specification, Testing and Verification addresses formal description techniques (FDTs) applicable to distributed systems and communication protocols. It aims to present the state of the art in theory, application, tools and industrialization of FDTs. Among the important features presented are: FDT-based system and protocol engineering; FDT-application to distributed systems; Protocol engineering; Practical experience and case studies. Formal Description Techniques and Protocol Specification, Testing and Verification comprises the proceedings of the Joint International Conference on Formal Description Techniques for Distributed Systems and Communication Protocols and Protocol Specification, Testing and Verification, sponsored by the International Federation for Information Processing, held in November 1998, Paris, France. Formal Description Techniques and Protocol Specification, Testing and Verification is suitable as a secondary text for a graduate-level course on Distributed Systems or Communications, and as a reference for researchers and practitioners in industry.
Global Specification and Validation of Embedded Systems
Author: G. Nicolescu
Publisher: Springer Science & Business Media
ISBN: 1402061536
Category : Technology & Engineering
Languages : en
Pages : 156
Book Description
This book offers up a deep understanding of concepts and practices behind the composition of heterogeneous components. After the analysis of existing computation and execution models used for the specification and validation of different sub-systems, the book introduces a systematic approach to build an execution model for systems composed of heterogeneous components. Mixed continuous/discrete and hardware/software systems are used to illustrate these concepts. The benefit of reading this book is to arrive at a clear vision of the theory and practice of specification and validation of complex modern systems. Numerous examples give designers highly applicable solutions.
Publisher: Springer Science & Business Media
ISBN: 1402061536
Category : Technology & Engineering
Languages : en
Pages : 156
Book Description
This book offers up a deep understanding of concepts and practices behind the composition of heterogeneous components. After the analysis of existing computation and execution models used for the specification and validation of different sub-systems, the book introduces a systematic approach to build an execution model for systems composed of heterogeneous components. Mixed continuous/discrete and hardware/software systems are used to illustrate these concepts. The benefit of reading this book is to arrive at a clear vision of the theory and practice of specification and validation of complex modern systems. Numerous examples give designers highly applicable solutions.
System-on-Chip
Author: Bashir M. Al-Hashimi
Publisher: IET
ISBN: 0863415520
Category : Technology & Engineering
Languages : en
Pages : 940
Book Description
This book highlights both the key achievements of electronic systems design targeting SoC implementation style, and the future challenges presented by the continuing scaling of CMOS technology.
Publisher: IET
ISBN: 0863415520
Category : Technology & Engineering
Languages : en
Pages : 940
Book Description
This book highlights both the key achievements of electronic systems design targeting SoC implementation style, and the future challenges presented by the continuing scaling of CMOS technology.