Introduction to Quantum Groups and Crystal Bases PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to Quantum Groups and Crystal Bases PDF full book. Access full book title Introduction to Quantum Groups and Crystal Bases by Jin Hong. Download full books in PDF and EPUB format.

Introduction to Quantum Groups and Crystal Bases

Introduction to Quantum Groups and Crystal Bases PDF Author: Jin Hong
Publisher: American Mathematical Soc.
ISBN: 0821828746
Category : Mathematics
Languages : en
Pages : 327

Book Description
The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.

Introduction to Quantum Groups and Crystal Bases

Introduction to Quantum Groups and Crystal Bases PDF Author: Jin Hong
Publisher: American Mathematical Soc.
ISBN: 0821828746
Category : Mathematics
Languages : en
Pages : 327

Book Description
The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.

Representations of Groups

Representations of Groups PDF Author: Bruce Normansell Allison
Publisher: American Mathematical Soc.
ISBN: 9780821803110
Category : Mathematics
Languages : en
Pages : 400

Book Description
Representations of Groups contains papers presented at the Canadian Mathematical Society Annual Seminar held in June 1994, in Banff, Alberta, Canada.

Quantum Groups and Their Primitive Ideals

Quantum Groups and Their Primitive Ideals PDF Author: Anthony Joseph
Publisher: Springer Science & Business Media
ISBN: 3642784003
Category : Mathematics
Languages : en
Pages : 394

Book Description
by a more general quadratic algebra (possibly obtained by deformation) and then to derive Rq [G] by requiring it to possess the latter as a comodule. A third principle is to focus attention on the tensor structure of the cat egory of (!; modules. This means of course just defining an algebra structure on Rq[G]; but this is to be done in a very specific manner. Concretely the category is required to be braided and this forces (9.4.2) the existence of an "R-matrix" satisfying in particular the quantum Yang-Baxter equation and from which the algebra structure of Rq[G] can be written down (9.4.5). Finally there was a search for a perfectly self-dual model for Rq[G] which would then be isomorphic to Uq(g). Apparently this failed; but V. G. Drinfeld found that it could be essentially made to work for the "Borel part" of Uq(g) denoted U (b) and further found a general construction (the Drinfeld double) q mirroring a Lie bialgebra. This gives Uq(g) up to passage to a quotient. One of the most remarkable aspects of the above superficially different ap proaches is their extraordinary intercoherence. In particular they essentially all lead for G semisimple to the same and hence "canonical", objects Rq[G] and Uq(g), though this epithet may as yet be premature.

A Guide to Quantum Groups

A Guide to Quantum Groups PDF Author: Vyjayanthi Chari
Publisher: Cambridge University Press
ISBN: 9780521558846
Category : Mathematics
Languages : en
Pages : 672

Book Description
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.

Introduction to Quantum Groups

Introduction to Quantum Groups PDF Author: George Lusztig
Publisher: Springer Science & Business Media
ISBN: 0817647171
Category : Mathematics
Languages : en
Pages : 361

Book Description
The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.

Geometric Complexity Theory IV: Nonstandard Quantum Group for the Kronecker Problem

Geometric Complexity Theory IV: Nonstandard Quantum Group for the Kronecker Problem PDF Author: Jonah Blasiak
Publisher: American Mathematical Soc.
ISBN: 1470410117
Category : Mathematics
Languages : en
Pages : 176

Book Description
The Kronecker coefficient is the multiplicity of the -irreducible in the restriction of the -irreducible via the natural map , where are -vector spaces and . A fundamental open problem in algebraic combinatorics is to find a positive combinatorial formula for these coefficients. The authors construct two quantum objects for this problem, which they call the nonstandard quantum group and nonstandard Hecke algebra. They show that the nonstandard quantum group has a compact real form and its representations are completely reducible, that the nonstandard Hecke algebra is semisimple, and that they satisfy an analog of quantum Schur-Weyl duality.

Crystal Bases: Representations And Combinatorics

Crystal Bases: Representations And Combinatorics PDF Author: Daniel Bump
Publisher: World Scientific Publishing Company
ISBN: 9814733466
Category : Mathematics
Languages : en
Pages : 292

Book Description
This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.

Handbook of Algebra

Handbook of Algebra PDF Author: M. Hazewinkel
Publisher: Elsevier
ISBN: 0080932819
Category : Mathematics
Languages : en
Pages : 637

Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes

Kac-Moody Lie Algebras and Related Topics

Kac-Moody Lie Algebras and Related Topics PDF Author: Neelacanta Sthanumoorthy
Publisher: American Mathematical Soc.
ISBN: 0821833375
Category : Mathematics
Languages : en
Pages : 384

Book Description
This volume is the proceedings of the Ramanujan International Symposium on Kac-Moody Lie algebras and their applications. The symposium provided researchers in mathematics and physics with the opportunity to discuss new developments in this rapidly-growing area of research. The book contains several excellent articles with new and significant results. It is suitable for graduate students and researchers working in Kac-Moody Lie algebras, their applications, and related areas of research.

Quantum Groups

Quantum Groups PDF Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821837133
Category : Mathematics
Languages : en
Pages : 352

Book Description
The papers in this volume are based on the talks given at the conference on quantum groups dedicated to the memory of Joseph Donin, which was held at the Technion Institute, Haifa, Israel in July 2004. A survey of Donin's distinguished mathematical career is included. Several articles, which were directly influenced by the research of Donin and his colleagues, deal with invariant quantization, dynamical $R$-matrices, Poisson homogeneous spaces, and reflection equation algebras. The topics of other articles include Hecke symmetries, orbifolds, set-theoretic solutions to the pentagon equations, representations of quantum current algebras, unipotent crystals, the Springer resolution, the Fourier transform on Hopf algebras, and, as a change of pace, the combinatorics of smoothly knotted surfaces. The articles all contain important new contributions to their respective areas and will be of great interest to graduate students and research mathematicians interested in Hopf algebras, quantum groups, and applications. Information for our distributors: This book is copublished with Bar-Ilan University (Ramat-Gan, Israel).