Geometry of the Phase Retrieval Problem PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Geometry of the Phase Retrieval Problem PDF full book. Access full book title Geometry of the Phase Retrieval Problem by Alexander H. Barnett. Download full books in PDF and EPUB format.

Geometry of the Phase Retrieval Problem

Geometry of the Phase Retrieval Problem PDF Author: Alexander H. Barnett
Publisher: Cambridge University Press
ISBN: 1316518876
Category : Mathematics
Languages : en
Pages : 321

Book Description
This book provides a theoretical foundation and conceptual framework for the problem of recovering the phase of the Fourier transform.

Geometry of the Phase Retrieval Problem

Geometry of the Phase Retrieval Problem PDF Author: Alexander H. Barnett
Publisher: Cambridge University Press
ISBN: 1316518876
Category : Mathematics
Languages : en
Pages : 321

Book Description
This book provides a theoretical foundation and conceptual framework for the problem of recovering the phase of the Fourier transform.

The Phase Retrieval Problem

The Phase Retrieval Problem PDF Author: David Aaron Barmherzig
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The phase retrieval problem is an inverse problem which consists of recovering a signal from a set of squared magnitude measurements. One version of this problem, often known as Fourier phase retrieval, arises ubiquitously in scientific imaging fields (such as diffraction imaging, crystallography, and optics, etc.) where one seeks to recover an image or signal from squared magnitude measurements of its Fourier transform. Another version, known as Gaussian phase retrieval, is manifested as the study of solving random systems of quadratic equations, and constitutes an important problem in the field of nonconvex optimization. The first part of this thesis introduces a general mathematical framework for the holographic phase retrieval problem. In this problem, which arises in holographic coherent diffraction imaging, a "reference" portion of the signal to be recovered via (Fourier) phase retrieval is a priori known from experimental design. A general formula is also derived for the expected recovery error when the measurement data is corrupted by Poisson shot noise. This facilitates an optimization perspective towards reference design and analysis, which is then employed towards quantifying the performance of various known reference choices. Based on insights gained from these results, a new "dual-reference" design is proposed which consists of two reference portions - being "block" and "pinhole" shaped regions - adjacent to the imaging specimen. Expected error analysis on data following a Poisson shot noise model shows that the dual-reference scheme produces uniformly superior performance over the leading single-reference schemes. Numerical experiments on simulated data corroborate these theoretical results, and demonstrate the advantage of the dual-reference design. Based on this work, a prototype experiment for holographic coherent diffraction imaging using a dual-reference has been designed at the SLAC National Accelerator Laboratory. The second part studies the one-dimensional Fourier phase retrieval problem, as well as the closely related spectral factorization problem. In its first chapter, a comprehensive exposition of the problem theory is provided. This includes a full characterization of its general nonuniqueness, as well as the special cases for which unique solutions exists. In the second chapter, a semidefinite programming formulation is derived for the Fourier phase retrieval problem. It is shown that this approach provides guaranteed recovery whenever there exists a unique phase retrieval solution. A correspondence is also established between solutions of the phase retrieval SDP, and sum-of-squares decompositions of Laurent and trigonometric polynomials. In the third chapter, a least-squares formulation is presented for the one-dimensional Fourier phase retrieval and spectral factorization problems. This formulation allows for the successful implementation of numerous first- and second-order optimization methods. In the third part, a biconvex formulation of the Gaussian phase retrieval problem is introduced. This allows for alternating-projection algorithms, such as ADMM and block coordinate descent, to be successfully applied to Gaussian phase retrieval. Both theoretical guarantees and numerical simulations demonstrate the success of these methods.

Phase Retrieval and Zero Crossings

Phase Retrieval and Zero Crossings PDF Author: N.E. Hurt
Publisher: Springer Science & Business Media
ISBN: 9781402003370
Category : Mathematics
Languages : en
Pages : 328

Book Description
'Et moi, ... , si j'avait su comment en :revenir, One scrvice mathematics has rendered the je n'y scrais point alle.' human race. lt has put common sense back Jules Veme where it bdongs, on the topmost shelf next to the dusty canister labclled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Erle T. Bc1l 0. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com­ puter science .. .'; 'One service category theory has rendered mathematics .. .'.All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

The Phase Retrieval Problem

The Phase Retrieval Problem PDF Author: Keith Allen Rinaldi
Publisher:
ISBN:
Category :
Languages : en
Pages : 80

Book Description


Music Through Fourier Space

Music Through Fourier Space PDF Author: Emmanuel Amiot
Publisher: Springer
ISBN: 3319455818
Category : Computers
Languages : en
Pages : 214

Book Description
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.

Nanoscale Photonic Imaging

Nanoscale Photonic Imaging PDF Author: Tim Salditt
Publisher: Springer Nature
ISBN: 3030344134
Category : Science
Languages : en
Pages : 634

Book Description
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Computational Geometry

Computational Geometry PDF Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413

Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

Phase retrieval problems in x-ray physics

Phase retrieval problems in x-ray physics PDF Author: Carolin Homann
Publisher: Göttingen University Press
ISBN: 3863952103
Category :
Languages : en
Pages : 126

Book Description
In phase retrieval problems that occur in imaging by coherent x-ray diffraction, one tries to reconstruct information about a sample of interest from possibly noisy intensity measurements of the wave fi eld traversing the sample. The mathematical formulation of these problems bases on some assumptions. Usually one of them is that the x-ray wave fi eld is generated by a point source. In order to address this very idealized assumption, it is common to perform a data preprocessing step, the so-called empty beam correction. Within this work, we study the validity of this approach by presenting a quantitative error estimate. Moreover, in order to solve these phase retrieval problems, we want to incorporate a priori knowledge about the structure of the noise and the solution into the reconstruction process. For this reason, the application of a problem adapted iteratively regularized Newton-type method becomes particularly attractive. This method includes the solution of a convex minimization problem in each iteration step. We present a method for solving general optimization problems of this form. Our method is a generalization of a commonly used algorithm which makes it efficiently applicable to a wide class of problems. We also proof convergence results and show the performance of our method by numerical examples.

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision PDF Author: Richard Hartley
Publisher: Cambridge University Press
ISBN: 1139449141
Category : Computers
Languages : en
Pages : 676

Book Description
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.

Sparse Solutions of Underdetermined Linear Systems and Their Applications

Sparse Solutions of Underdetermined Linear Systems and Their Applications PDF Author: Ming-Jun Lai
Publisher: SIAM
ISBN: 1611976510
Category : Mathematics
Languages : en
Pages :

Book Description
This textbook presents a special solution to underdetermined linear systems where the number of nonzero entries in the solution is very small compared to the total number of entries. This is called a sparse solution. Since underdetermined linear systems can be very different, the authors explain how to compute a sparse solution using many approaches. Sparse Solutions of Underdetermined Linear Systems and Their Applications contains 64 algorithms for finding sparse solutions of underdetermined linear systems and their applications for matrix completion, graph clustering, and phase retrieval and provides a detailed explanation of these algorithms including derivations and convergence analysis. Exercises for each chapter help readers understand the material. This textbook is appropriate for graduate students in math and applied math, computer science, statistics, data science, and engineering. Advisors and postdoctoral scholars will also find the book interesting and useful.