Author: Vladimir V Kisil
Publisher: World Scientific
ISBN: 1908977604
Category : Mathematics
Languages : en
Pages : 207
Book Description
This book is a unique exposition of rich and inspiring geometries associated with Möbius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL2(R). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F Klein, who defined geometry as a study of invariants under a transitive group action.The treatment of elliptic, parabolic and hyperbolic Möbius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered./a
Geometry Of Mobius Transformations: Elliptic, Parabolic And Hyperbolic Actions Of Sl2(r) (With Dvd-rom)
Author: Vladimir V Kisil
Publisher: World Scientific
ISBN: 1908977604
Category : Mathematics
Languages : en
Pages : 207
Book Description
This book is a unique exposition of rich and inspiring geometries associated with Möbius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL2(R). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F Klein, who defined geometry as a study of invariants under a transitive group action.The treatment of elliptic, parabolic and hyperbolic Möbius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered./a
Publisher: World Scientific
ISBN: 1908977604
Category : Mathematics
Languages : en
Pages : 207
Book Description
This book is a unique exposition of rich and inspiring geometries associated with Möbius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL2(R). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F Klein, who defined geometry as a study of invariants under a transitive group action.The treatment of elliptic, parabolic and hyperbolic Möbius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered./a
Geometry of Möbius Transformations
Author: Vladimir V. Kisil
Publisher: World Scientific
ISBN: 1848168586
Category : Mathematics
Languages : en
Pages : 207
Book Description
This book is a unique exposition of rich and inspiring geometries associated with Möbius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL2(R). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F Klein, who defined geometry as a study of invariants under a transitive group action.The treatment of elliptic, parabolic and hyperbolic Möbius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered.
Publisher: World Scientific
ISBN: 1848168586
Category : Mathematics
Languages : en
Pages : 207
Book Description
This book is a unique exposition of rich and inspiring geometries associated with Möbius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL2(R). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F Klein, who defined geometry as a study of invariants under a transitive group action.The treatment of elliptic, parabolic and hyperbolic Möbius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered.
Topics in Clifford Analysis
Author: Swanhild Bernstein
Publisher: Springer Nature
ISBN: 3030238547
Category : Mathematics
Languages : en
Pages : 509
Book Description
Quaternionic and Clifford analysis are an extension of complex analysis into higher dimensions. The unique starting point of Wolfgang Sprößig’s work was the application of quaternionic analysis to elliptic differential equations and boundary value problems. Over the years, Clifford analysis has become a broad-based theory with a variety of applications both inside and outside of mathematics, such as higher-dimensional function theory, algebraic structures, generalized polynomials, applications of elliptic boundary value problems, wavelets, image processing, numerical and discrete analysis. The aim of this volume is to provide an essential overview of modern topics in Clifford analysis, presented by specialists in the field, and to honor the valued contributions to Clifford analysis made by Wolfgang Sprößig throughout his career.
Publisher: Springer Nature
ISBN: 3030238547
Category : Mathematics
Languages : en
Pages : 509
Book Description
Quaternionic and Clifford analysis are an extension of complex analysis into higher dimensions. The unique starting point of Wolfgang Sprößig’s work was the application of quaternionic analysis to elliptic differential equations and boundary value problems. Over the years, Clifford analysis has become a broad-based theory with a variety of applications both inside and outside of mathematics, such as higher-dimensional function theory, algebraic structures, generalized polynomials, applications of elliptic boundary value problems, wavelets, image processing, numerical and discrete analysis. The aim of this volume is to provide an essential overview of modern topics in Clifford analysis, presented by specialists in the field, and to honor the valued contributions to Clifford analysis made by Wolfgang Sprößig throughout his career.
Expansion in Finite Simple Groups of Lie Type
Author: Terence Tao
Publisher: American Mathematical Soc.
ISBN: 1470421968
Category : Mathematics
Languages : en
Pages : 319
Book Description
Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.
Publisher: American Mathematical Soc.
ISBN: 1470421968
Category : Mathematics
Languages : en
Pages : 319
Book Description
Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.
Advances in Applied Analysis
Author: Sergei V. Rogosin
Publisher: Springer Science & Business Media
ISBN: 3034804172
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book contains survey papers based on the lectures presented at the 3rd International Winter School “Modern Problems of Mathematics and Mechanics” held in January 2010 at the Belarusian State University, Minsk. These lectures are devoted to different problems of modern analysis and its applications. An extended presentation of modern problems of applied analysis will enable the reader to get familiar with new approaches of mostly interdisciplinary character. The results discussed are application oriented and present new insight into applied problems of growing importance such as applications to composite materials, anomalous diffusion, and fluid dynamics.
Publisher: Springer Science & Business Media
ISBN: 3034804172
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book contains survey papers based on the lectures presented at the 3rd International Winter School “Modern Problems of Mathematics and Mechanics” held in January 2010 at the Belarusian State University, Minsk. These lectures are devoted to different problems of modern analysis and its applications. An extended presentation of modern problems of applied analysis will enable the reader to get familiar with new approaches of mostly interdisciplinary character. The results discussed are application oriented and present new insight into applied problems of growing importance such as applications to composite materials, anomalous diffusion, and fluid dynamics.
A Primer of Infinitesimal Analysis
Author: John L. Bell
Publisher: Cambridge University Press
ISBN: 0521887186
Category : Mathematics
Languages : en
Pages : 7
Book Description
A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
Publisher: Cambridge University Press
ISBN: 0521887186
Category : Mathematics
Languages : en
Pages : 7
Book Description
A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
Directions in Physics
Author: Paul Adrien Maurice Dirac
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 120
Book Description
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 120
Book Description
The Mathematics of Minkowski Space-Time
Author: Francesco Catoni
Publisher: Springer Science & Business Media
ISBN: 3764386142
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book arose out of original research on the extension of well-established applications of complex numbers related to Euclidean geometry and to the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers is extensively studied, and a plain exposition of space-time geometry and trigonometry is given. Commutative hypercomplex systems with four unities are studied and attention is drawn to their interesting properties.
Publisher: Springer Science & Business Media
ISBN: 3764386142
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book arose out of original research on the extension of well-established applications of complex numbers related to Euclidean geometry and to the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers is extensively studied, and a plain exposition of space-time geometry and trigonometry is given. Commutative hypercomplex systems with four unities are studied and attention is drawn to their interesting properties.
A Simple Non-Euclidean Geometry and Its Physical Basis
Author: I.M. Yaglom
Publisher: Springer Science & Business Media
ISBN: 146126135X
Category : Mathematics
Languages : en
Pages : 326
Book Description
There are many technical and popular accounts, both in Russian and in other languages, of the non-Euclidean geometry of Lobachevsky and Bolyai, a few of which are listed in the Bibliography. This geometry, also called hyperbolic geometry, is part of the required subject matter of many mathematics departments in universities and teachers' colleges-a reflec tion of the view that familiarity with the elements of hyperbolic geometry is a useful part of the background of future high school teachers. Much attention is paid to hyperbolic geometry by school mathematics clubs. Some mathematicians and educators concerned with reform of the high school curriculum believe that the required part of the curriculum should include elements of hyperbolic geometry, and that the optional part of the curriculum should include a topic related to hyperbolic geometry. I The broad interest in hyperbolic geometry is not surprising. This interest has little to do with mathematical and scientific applications of hyperbolic geometry, since the applications (for instance, in the theory of automorphic functions) are rather specialized, and are likely to be encountered by very few of the many students who conscientiously study (and then present to examiners) the definition of parallels in hyperbolic geometry and the special features of configurations of lines in the hyperbolic plane. The principal reason for the interest in hyperbolic geometry is the important fact of "non-uniqueness" of geometry; of the existence of many geometric systems.
Publisher: Springer Science & Business Media
ISBN: 146126135X
Category : Mathematics
Languages : en
Pages : 326
Book Description
There are many technical and popular accounts, both in Russian and in other languages, of the non-Euclidean geometry of Lobachevsky and Bolyai, a few of which are listed in the Bibliography. This geometry, also called hyperbolic geometry, is part of the required subject matter of many mathematics departments in universities and teachers' colleges-a reflec tion of the view that familiarity with the elements of hyperbolic geometry is a useful part of the background of future high school teachers. Much attention is paid to hyperbolic geometry by school mathematics clubs. Some mathematicians and educators concerned with reform of the high school curriculum believe that the required part of the curriculum should include elements of hyperbolic geometry, and that the optional part of the curriculum should include a topic related to hyperbolic geometry. I The broad interest in hyperbolic geometry is not surprising. This interest has little to do with mathematical and scientific applications of hyperbolic geometry, since the applications (for instance, in the theory of automorphic functions) are rather specialized, and are likely to be encountered by very few of the many students who conscientiously study (and then present to examiners) the definition of parallels in hyperbolic geometry and the special features of configurations of lines in the hyperbolic plane. The principal reason for the interest in hyperbolic geometry is the important fact of "non-uniqueness" of geometry; of the existence of many geometric systems.
The Four Pillars of Geometry
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises