Geometry of Manifolds PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Geometry of Manifolds PDF full book. Access full book title Geometry of Manifolds by . Download full books in PDF and EPUB format.

Geometry of Manifolds

Geometry of Manifolds PDF Author:
Publisher: Academic Press
ISBN: 0080873278
Category : Mathematics
Languages : en
Pages : 287

Book Description
Geometry of Manifolds

Geometry of Manifolds

Geometry of Manifolds PDF Author:
Publisher: Academic Press
ISBN: 0080873278
Category : Mathematics
Languages : en
Pages : 287

Book Description
Geometry of Manifolds

Geometry and Topology of Manifolds: Surfaces and Beyond

Geometry and Topology of Manifolds: Surfaces and Beyond PDF Author: Vicente Muñoz
Publisher: American Mathematical Soc.
ISBN: 1470461323
Category : Education
Languages : en
Pages : 408

Book Description
This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.

Differential Geometry of Manifolds

Differential Geometry of Manifolds PDF Author: Stephen Lovett
Publisher: CRC Press
ISBN: 0429602308
Category : Mathematics
Languages : en
Pages : 466

Book Description
Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics. The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory. The Second Edition of this successful textbook offers several notable points of revision. New to the Second Edition: New problems have been added and the level of challenge has been changed to the exercises Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers Includes new sections which provide more comprehensive coverage of topics Features a new chapter on Multilinear Algebra

Manifolds and Differential Geometry

Manifolds and Differential Geometry PDF Author: Jeffrey Marc Lee
Publisher: American Mathematical Soc.
ISBN: 0821848151
Category : Mathematics
Languages : en
Pages : 690

Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.

Geometry of Manifolds

Geometry of Manifolds PDF Author: Richard L. Bishop
Publisher: American Mathematical Soc.
ISBN: 0821829238
Category : Mathematics
Languages : en
Pages : 290

Book Description
From the Preface of the First Edition: ``Our purpose in writing this book is to put material which we found stimulating and interesting as graduate students into form. It is intended for individual study and for use as a text for graduate level courses such as the one from which this material stems, given by Professor W. Ambrose at MIT in 1958-1959. Previously the material had been organized in roughly the same form by him and Professor I. M. Singer, and they in turn drew upon thework of Ehresmann, Chern, and E. Cartan. Our contributions have been primarily to fill out the material with details, asides and problems, and to alter notation slightly. ``We believe that this subject matter, besides being an interesting area for specialization, lends itself especially to a synthesisof several branches of mathematics, and thus should be studied by a wide spectrum of graduate students so as to break away from narrow specialization and see how their own fields are related and applied in other fields. We feel that at least part of this subject should be of interest not only to those working in geometry, but also to those in analysis, topology, algebra, and even probability and astronomy. In order that this book be meaningful, the reader's background should include realvariable theory, linear algebra, and point set topology.'' This volume is a reprint with few corrections of the original work published in 1964. Starting with the notion of differential manifolds, the first six chapters lay a foundation for the study of Riemannian manifolds through specializing the theoryof connections on principle bundles and affine connections. The geometry of Riemannian manifolds is emphasized, as opposed to global analysis, so that the theorems of Hopf-Rinow, Hadamard-Cartan, and Cartan's local isometry theorem are included, but no elliptic operator theory. Isometric immersions are treated elegantly and from a global viewpoint. In the final chapter are the more complicated estimates on which much of the research in Riemannian geometry is based: the Morse index theorem,Synge's theorems on closed geodesics, Rauch's comparison theorem, and the original proof of the Bishop volume-comparison theorem (with Myer's Theorem as a corollary). The first edition of this book was the origin of a modern treatment of global Riemannian geometry, using the carefully conceived notationthat has withstood the test of time. The primary source material for the book were the papers and course notes of brilliant geometers, including E. Cartan, C. Ehresmann, I. M. Singer, and W. Ambrose. It is tightly organized, uniformly very precise, and amazingly comprehensive for its length.

Lectures on the Geometry of Manifolds

Lectures on the Geometry of Manifolds PDF Author: Liviu I. Nicolaescu
Publisher: World Scientific
ISBN: 9812708537
Category : Mathematics
Languages : en
Pages : 606

Book Description
The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytical bias?. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar‚ duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-;Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand H”lder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.

An Introduction to Manifolds

An Introduction to Manifolds PDF Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426

Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Riemannian Geometry of Contact and Symplectic Manifolds

Riemannian Geometry of Contact and Symplectic Manifolds PDF Author: David E. Blair
Publisher: Springer Science & Business Media
ISBN: 1475736045
Category : Mathematics
Languages : en
Pages : 263

Book Description
Book endorsed by the Sunyer Prize Committee (A. Weinstein, J. Oesterle et. al.).

Lectures on the Geometry of Poisson Manifolds

Lectures on the Geometry of Poisson Manifolds PDF Author: Izu Vaisman
Publisher: Birkhäuser
ISBN: 3034884958
Category : Mathematics
Languages : en
Pages : 210

Book Description
This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.

Differential Geometry: Manifolds, Curves, and Surfaces

Differential Geometry: Manifolds, Curves, and Surfaces PDF Author: Marcel Berger
Publisher: Springer Science & Business Media
ISBN: 146121033X
Category : Mathematics
Languages : en
Pages : 487

Book Description
This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds.