Author: Jeroen van Dongen
Publisher: Cambridge University Press
ISBN: 1139643924
Category : Science
Languages : en
Pages : 225
Book Description
Why did Einstein tirelessly study unified field theory for more than thirty years? In this book, the author argues that Einstein believed he could find a unified theory of all of nature's forces by repeating the methods he thought he had used when he formulated general relativity. The book discusses Einstein's route to the general theory of relativity, focusing on the philosophical lessons that he learnt. It then addresses his quest for a unified theory for electromagnetism and gravity, discussing in detail his efforts with Kaluza-Klein and, surprisingly, the theory of spinors. From these perspectives, Einstein's critical stance towards the quantum theory comes to stand in a new light. This book will be of interest to physicists, historians and philosophers of science.
Einstein's Unification
Author: Jeroen van Dongen
Publisher: Cambridge University Press
ISBN: 1139643924
Category : Science
Languages : en
Pages : 225
Book Description
Why did Einstein tirelessly study unified field theory for more than thirty years? In this book, the author argues that Einstein believed he could find a unified theory of all of nature's forces by repeating the methods he thought he had used when he formulated general relativity. The book discusses Einstein's route to the general theory of relativity, focusing on the philosophical lessons that he learnt. It then addresses his quest for a unified theory for electromagnetism and gravity, discussing in detail his efforts with Kaluza-Klein and, surprisingly, the theory of spinors. From these perspectives, Einstein's critical stance towards the quantum theory comes to stand in a new light. This book will be of interest to physicists, historians and philosophers of science.
Publisher: Cambridge University Press
ISBN: 1139643924
Category : Science
Languages : en
Pages : 225
Book Description
Why did Einstein tirelessly study unified field theory for more than thirty years? In this book, the author argues that Einstein believed he could find a unified theory of all of nature's forces by repeating the methods he thought he had used when he formulated general relativity. The book discusses Einstein's route to the general theory of relativity, focusing on the philosophical lessons that he learnt. It then addresses his quest for a unified theory for electromagnetism and gravity, discussing in detail his efforts with Kaluza-Klein and, surprisingly, the theory of spinors. From these perspectives, Einstein's critical stance towards the quantum theory comes to stand in a new light. This book will be of interest to physicists, historians and philosophers of science.
Einstein at Work on Unified Field Theory
Author: Tobias Schütz
Publisher: Springer Nature
ISBN: 3031521277
Category :
Languages : en
Pages : 362
Book Description
Publisher: Springer Nature
ISBN: 3031521277
Category :
Languages : en
Pages : 362
Book Description
Beyond Geometry
Author: Peter Pesic
Publisher: Courier Corporation
ISBN: 0486453502
Category : Mathematics
Languages : en
Pages : 226
Book Description
Eight essays trace seminal ideas about the foundations of geometry that led to the development of Einstein's general theory of relativity. This is the only English-language collection of these important papers, some of which are extremely hard to find. Contributors include Helmholtz, Klein, Clifford, Poincaré, and Cartan.
Publisher: Courier Corporation
ISBN: 0486453502
Category : Mathematics
Languages : en
Pages : 226
Book Description
Eight essays trace seminal ideas about the foundations of geometry that led to the development of Einstein's general theory of relativity. This is the only English-language collection of these important papers, some of which are extremely hard to find. Contributors include Helmholtz, Klein, Clifford, Poincaré, and Cartan.
Einstein's Theory of Unified Fields
Author: Marie Antoinette Tonnelat
Publisher: Routledge
ISBN: 1317698797
Category : History
Languages : en
Pages : 118
Book Description
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or ‘didactic exposition’ of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research which together comprise the development of a working model, the author ranges over conservation equations, variational principles, solutions of spherical symmetry, and treats a wide selection of Einstein’s own equations. The final chapter indicates problems associated with the unified field theory, in particular the energy-momentum tensor and geodesics.
Publisher: Routledge
ISBN: 1317698797
Category : History
Languages : en
Pages : 118
Book Description
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or ‘didactic exposition’ of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research which together comprise the development of a working model, the author ranges over conservation equations, variational principles, solutions of spherical symmetry, and treats a wide selection of Einstein’s own equations. The final chapter indicates problems associated with the unified field theory, in particular the energy-momentum tensor and geodesics.
Relativity and Geometry
Author: Roberto Torretti
Publisher: Courier Corporation
ISBN: 0486690466
Category : Science
Languages : en
Pages : 417
Book Description
Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.
Publisher: Courier Corporation
ISBN: 0486690466
Category : Science
Languages : en
Pages : 417
Book Description
Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.
Evans Equations of Unified Field Theory
Author: Laurence G. Felker
Publisher: Theschoolbook.com
ISBN: 9781845492144
Category : Science
Languages : en
Pages : 388
Book Description
Einstein was Right! Quantum Mechanics and General Relativity are the two main theories of physics that describe the universe in which we live. Attempts at combining them have been made since the 1920's with no success. Albert Einstein spent much of his later years searching for the key to unification. He never fully accepted quantum theory and maintained it was incomplete. Einstein showed that gravitation is the curving of spacetime, not an attractive force between masses. Evans has showed that electromagnetism is the spinning of spacetime. Using Cartan differential geometry, Evans describes Einstein's gravitation and quantum electromagnetics in the same equations. This book describes the basics of special relativity, quantum mechanics, general relativity, and the geometry used to describe them.
Publisher: Theschoolbook.com
ISBN: 9781845492144
Category : Science
Languages : en
Pages : 388
Book Description
Einstein was Right! Quantum Mechanics and General Relativity are the two main theories of physics that describe the universe in which we live. Attempts at combining them have been made since the 1920's with no success. Albert Einstein spent much of his later years searching for the key to unification. He never fully accepted quantum theory and maintained it was incomplete. Einstein showed that gravitation is the curving of spacetime, not an attractive force between masses. Evans has showed that electromagnetism is the spinning of spacetime. Using Cartan differential geometry, Evans describes Einstein's gravitation and quantum electromagnetics in the same equations. This book describes the basics of special relativity, quantum mechanics, general relativity, and the geometry used to describe them.
Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes)
Author: Gerhard Grensing
Publisher: World Scientific
ISBN: 9811237093
Category : Science
Languages : en
Pages : 1656
Book Description
The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.
Publisher: World Scientific
ISBN: 9811237093
Category : Science
Languages : en
Pages : 1656
Book Description
The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.
Einstein's Dice and Schrödinger's Cat
Author: Paul Halpern
Publisher: Basic Books
ISBN: 0465040659
Category : Science
Languages : en
Pages : 282
Book Description
"A fascinating and thought-provoking story, one that sheds light on the origins of . . . the current challenging situation in physics." -- Wall Street Journal When the fuzzy indeterminacy of quantum mechanics overthrew the orderly world of Isaac Newton, Albert Einstein and Erwin Schröger were at the forefront of the revolution. Neither man was ever satisfied with the standard interpretation of quantum mechanics, however, and both rebelled against what they considered the most preposterous aspect of quantum mechanics: its randomness. Einstein famously quipped that God does not play dice with the universe, and Schröger constructed his famous fable of a cat that was neither alive nor dead not to explain quantum mechanics but to highlight the apparent absurdity of a theory gone wrong. But these two giants did more than just criticize: they fought back, seeking a Theory of Everything that would make the universe seem sensible again. In Einstein's Dice and Schröger's Cat, physicist Paul Halpern tells the little-known story of how Einstein and Schröger searched, first as collaborators and then as competitors, for a theory that transcended quantum weirdness. This story of their quest-which ultimately failed-provides readers with new insights into the history of physics and the lives and work of two scientists whose obsessions drove its progress. Today, much of modern physics remains focused on the search for a Theory of Everything. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model-the closest thing we have to a unified theory- nearly complete. And while Einstein and Schröger failed in their attempt to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when they were wrong, Einstein and Schröger couldn't help but get a great deal right.
Publisher: Basic Books
ISBN: 0465040659
Category : Science
Languages : en
Pages : 282
Book Description
"A fascinating and thought-provoking story, one that sheds light on the origins of . . . the current challenging situation in physics." -- Wall Street Journal When the fuzzy indeterminacy of quantum mechanics overthrew the orderly world of Isaac Newton, Albert Einstein and Erwin Schröger were at the forefront of the revolution. Neither man was ever satisfied with the standard interpretation of quantum mechanics, however, and both rebelled against what they considered the most preposterous aspect of quantum mechanics: its randomness. Einstein famously quipped that God does not play dice with the universe, and Schröger constructed his famous fable of a cat that was neither alive nor dead not to explain quantum mechanics but to highlight the apparent absurdity of a theory gone wrong. But these two giants did more than just criticize: they fought back, seeking a Theory of Everything that would make the universe seem sensible again. In Einstein's Dice and Schröger's Cat, physicist Paul Halpern tells the little-known story of how Einstein and Schröger searched, first as collaborators and then as competitors, for a theory that transcended quantum weirdness. This story of their quest-which ultimately failed-provides readers with new insights into the history of physics and the lives and work of two scientists whose obsessions drove its progress. Today, much of modern physics remains focused on the search for a Theory of Everything. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model-the closest thing we have to a unified theory- nearly complete. And while Einstein and Schröger failed in their attempt to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when they were wrong, Einstein and Schröger couldn't help but get a great deal right.
Group Theoretical Methods in Physics
Author: Robert Shar
Publisher: Elsevier
ISBN: 0323141528
Category : Science
Languages : en
Pages : 685
Book Description
Group Theoretical Methods in Physics: Proceedings of the Fifth International Colloquium provides information pertinent to the fundamental aspects of group theoretical methods in physics. This book provides a variety of topics, including nuclear collective motion, complex Riemannian geometry, quantum mechanics, and relativistic symmetry. Organized into six parts encompassing 64 chapters, this book begins with an overview of the theories of nuclear quadrupole dynamics. This text then examines the conventional approach in the determination of superstructures. Other chapters consider the Hamiltonian formalism and how it is applied to the KdV equation and to a slight variant of the KdV equation. This book discusses as well the significant differential equations of mathematical physics that are integrable Hamiltonian systems, including the equations governing self-induced transparency and the motion of particles under an inverse square potential. The final chapter deals with the decomposition of the tensor product of two irreducible representations of the symmetric group into a direct sum of irreducible representations. This book is a valuable resource for physicists.
Publisher: Elsevier
ISBN: 0323141528
Category : Science
Languages : en
Pages : 685
Book Description
Group Theoretical Methods in Physics: Proceedings of the Fifth International Colloquium provides information pertinent to the fundamental aspects of group theoretical methods in physics. This book provides a variety of topics, including nuclear collective motion, complex Riemannian geometry, quantum mechanics, and relativistic symmetry. Organized into six parts encompassing 64 chapters, this book begins with an overview of the theories of nuclear quadrupole dynamics. This text then examines the conventional approach in the determination of superstructures. Other chapters consider the Hamiltonian formalism and how it is applied to the KdV equation and to a slight variant of the KdV equation. This book discusses as well the significant differential equations of mathematical physics that are integrable Hamiltonian systems, including the equations governing self-induced transparency and the motion of particles under an inverse square potential. The final chapter deals with the decomposition of the tensor product of two irreducible representations of the symmetric group into a direct sum of irreducible representations. This book is a valuable resource for physicists.
Einstein's Pathway to the Special Theory of Relativity
Author: Galina Weinstein
Publisher: Cambridge Scholars Publishing
ISBN: 1443878898
Category : Science
Languages : en
Pages : 360
Book Description
This book pieces together the jigsaw puzzle of Einstein’s journey to discovering the special theory of relativity. Between 1902 and 1905, Einstein sat in the Patent Office and may have made calculations on old pieces of paper that were once patent drafts. One can imagine Einstein trying to hide from his boss, writing notes on small sheets of paper, and, according to reports, seeing to it that the small sheets of paper on which he was writing would vanish into his desk-drawer as soon as he heard footsteps approaching his door. He probably discarded many pieces of papers and calculations and flung them in the waste paper basket in the Patent Office. The end result was that Einstein published nothing regarding the special theory of relativity prior to 1905. For many years before 1905, he had been intensely concerned with the topic; in fact, he was busily working on the problem for seven or eight years prior to 1905. Unfortunately, there are no surviving notebooks and manuscripts, no notes and papers or other primary sources from this critical period to provide any information about the crucial steps that led Einstein to his great discovery. In May 1905, Henri Poincaré sent three letters to Hendrik Lorentz at the same time that Einstein wrote his famous May 1905 letter to Conrad Habicht, promising him four works, of which the fourth one, Relativity, was a rough draft at that point. In the May 1905 letters to Lorentz, Poincaré presented the basic equations of his 1905 “Dynamics of the Electron”, meaning that, at this point, Poincaré and Einstein both had drafts of papers relating to the principle of relativity. The book discusses Einstein’s and Poincaré’s creativity and the process by which their ideas developed. The book also explores the misunderstandings and paradoxes apparent in the theory of relativity, and unravels the subtleties and creativity of Einstein.
Publisher: Cambridge Scholars Publishing
ISBN: 1443878898
Category : Science
Languages : en
Pages : 360
Book Description
This book pieces together the jigsaw puzzle of Einstein’s journey to discovering the special theory of relativity. Between 1902 and 1905, Einstein sat in the Patent Office and may have made calculations on old pieces of paper that were once patent drafts. One can imagine Einstein trying to hide from his boss, writing notes on small sheets of paper, and, according to reports, seeing to it that the small sheets of paper on which he was writing would vanish into his desk-drawer as soon as he heard footsteps approaching his door. He probably discarded many pieces of papers and calculations and flung them in the waste paper basket in the Patent Office. The end result was that Einstein published nothing regarding the special theory of relativity prior to 1905. For many years before 1905, he had been intensely concerned with the topic; in fact, he was busily working on the problem for seven or eight years prior to 1905. Unfortunately, there are no surviving notebooks and manuscripts, no notes and papers or other primary sources from this critical period to provide any information about the crucial steps that led Einstein to his great discovery. In May 1905, Henri Poincaré sent three letters to Hendrik Lorentz at the same time that Einstein wrote his famous May 1905 letter to Conrad Habicht, promising him four works, of which the fourth one, Relativity, was a rough draft at that point. In the May 1905 letters to Lorentz, Poincaré presented the basic equations of his 1905 “Dynamics of the Electron”, meaning that, at this point, Poincaré and Einstein both had drafts of papers relating to the principle of relativity. The book discusses Einstein’s and Poincaré’s creativity and the process by which their ideas developed. The book also explores the misunderstandings and paradoxes apparent in the theory of relativity, and unravels the subtleties and creativity of Einstein.