Author: Gabriel Weinreich
Publisher: University of Chicago Press
ISBN: 9780226890487
Category : Mathematics
Languages : en
Pages : 132
Book Description
Every advanced undergraduate and graduate student of physics must master the concepts of vectors and vector analysis. Yet most books cover this topic by merely repeating the introductory-level treatment based on a limited algebraic or analytic view of the subject. Geometrical Vectors introduces a more sophisticated approach, which not only brings together many loose ends of the traditional treatment, but also leads directly into the practical use of vectors in general curvilinear coordinates by carefully separating those relationships which are topologically invariant from those which are not. Based on the essentially geometric nature of the subject, this approach builds consistently on students' prior knowledge and geometrical intuition. Written in an informal and personal style, Geometrical Vectors provides a handy guide for any student of vector analysis. Clear, carefully constructed line drawings illustrate key points in the text, and problem sets as well as physical examples are provided.
Geometrical Vectors
Author: Gabriel Weinreich
Publisher: University of Chicago Press
ISBN: 022677869X
Category : Science
Languages : en
Pages : 126
Book Description
Every advanced undergraduate and graduate student of physics must master the concepts of vectors and vector analysis. Yet most books cover this topic by merely repeating the introductory-level treatment based on a limited algebraic or analytic view of the subject. Geometrical Vectors introduces a more sophisticated approach, which not only brings together many loose ends of the traditional treatment, but also leads directly into the practical use of vectors in general curvilinear coordinates by carefully separating those relationships which are topologically invariant from those which are not. Based on the essentially geometric nature of the subject, this approach builds consistently on students' prior knowledge and geometrical intuition. Written in an informal and personal style, Geometrical Vectors provides a handy guide for any student of vector analysis. Clear, carefully constructed line drawings illustrate key points in the text, and problem sets as well as physical examples are provided.
Publisher: University of Chicago Press
ISBN: 022677869X
Category : Science
Languages : en
Pages : 126
Book Description
Every advanced undergraduate and graduate student of physics must master the concepts of vectors and vector analysis. Yet most books cover this topic by merely repeating the introductory-level treatment based on a limited algebraic or analytic view of the subject. Geometrical Vectors introduces a more sophisticated approach, which not only brings together many loose ends of the traditional treatment, but also leads directly into the practical use of vectors in general curvilinear coordinates by carefully separating those relationships which are topologically invariant from those which are not. Based on the essentially geometric nature of the subject, this approach builds consistently on students' prior knowledge and geometrical intuition. Written in an informal and personal style, Geometrical Vectors provides a handy guide for any student of vector analysis. Clear, carefully constructed line drawings illustrate key points in the text, and problem sets as well as physical examples are provided.
Geometrical Vectors
Author: Gabriel Weinreich
Publisher: University of Chicago Press
ISBN: 9780226890487
Category : Mathematics
Languages : en
Pages : 132
Book Description
Every advanced undergraduate and graduate student of physics must master the concepts of vectors and vector analysis. Yet most books cover this topic by merely repeating the introductory-level treatment based on a limited algebraic or analytic view of the subject. Geometrical Vectors introduces a more sophisticated approach, which not only brings together many loose ends of the traditional treatment, but also leads directly into the practical use of vectors in general curvilinear coordinates by carefully separating those relationships which are topologically invariant from those which are not. Based on the essentially geometric nature of the subject, this approach builds consistently on students' prior knowledge and geometrical intuition. Written in an informal and personal style, Geometrical Vectors provides a handy guide for any student of vector analysis. Clear, carefully constructed line drawings illustrate key points in the text, and problem sets as well as physical examples are provided.
Publisher: University of Chicago Press
ISBN: 9780226890487
Category : Mathematics
Languages : en
Pages : 132
Book Description
Every advanced undergraduate and graduate student of physics must master the concepts of vectors and vector analysis. Yet most books cover this topic by merely repeating the introductory-level treatment based on a limited algebraic or analytic view of the subject. Geometrical Vectors introduces a more sophisticated approach, which not only brings together many loose ends of the traditional treatment, but also leads directly into the practical use of vectors in general curvilinear coordinates by carefully separating those relationships which are topologically invariant from those which are not. Based on the essentially geometric nature of the subject, this approach builds consistently on students' prior knowledge and geometrical intuition. Written in an informal and personal style, Geometrical Vectors provides a handy guide for any student of vector analysis. Clear, carefully constructed line drawings illustrate key points in the text, and problem sets as well as physical examples are provided.
Geometrical Properties of Vectors and Convectors
Author: Joaquim M. Domingos
Publisher: World Scientific
ISBN: 9812700447
Category : Mathematics
Languages : en
Pages : 82
Book Description
This is a brief introduction to some geometrical topics including topological spaces, the metric tensor, Euclidean space, manifolds, tensors, r-forms, the orientation of a manifold and the Hodge star operator. It provides the reader who is approaching the subject for the first time with a deeper understanding of the geometrical properties of vectors and covectors. The material prepares the reader for discussions on basic concepts such as the differential of a function as a covector, metric dual, inner product, wedge product and cross product.J M Domingos received his D Phil from the University of Oxford and has now retired from the post of Professor of Physics at the University of Coimbra, Portugal.
Publisher: World Scientific
ISBN: 9812700447
Category : Mathematics
Languages : en
Pages : 82
Book Description
This is a brief introduction to some geometrical topics including topological spaces, the metric tensor, Euclidean space, manifolds, tensors, r-forms, the orientation of a manifold and the Hodge star operator. It provides the reader who is approaching the subject for the first time with a deeper understanding of the geometrical properties of vectors and covectors. The material prepares the reader for discussions on basic concepts such as the differential of a function as a covector, metric dual, inner product, wedge product and cross product.J M Domingos received his D Phil from the University of Oxford and has now retired from the post of Professor of Physics at the University of Coimbra, Portugal.
An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups
Author: Stefano Biagi
Publisher: World Scientific
ISBN: 9813276630
Category : Mathematics
Languages : en
Pages : 450
Book Description
This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:
Publisher: World Scientific
ISBN: 9813276630
Category : Mathematics
Languages : en
Pages : 450
Book Description
This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:
Clifford Algebra to Geometric Calculus
Author: David Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
An Introduction to Geometrical Physics
Author: Aldrovandi Ruben
Publisher: World Scientific
ISBN: 9813146834
Category : Science
Languages : en
Pages : 844
Book Description
This book focuses on the unifying power of the geometrical language in bringing together concepts from many different areas of physics, ranging from classical physics to the theories describing the four fundamental interactions of Nature -- gravitational, electromagnetic, strong nuclear, and weak nuclear. The book provides in a single volume a thorough introduction to topology and differential geometry, as well as many applications to both mathematical and physical problems. It is aimed as an elementary text and is intended for first year graduate students. In addition to the traditional contents of books on special and general relativities, this book discusses also some recent advances such as de Sitter invariant special relativity, teleparallel gravity and their implications in cosmology for those wishing to reach a higher level of understanding.
Publisher: World Scientific
ISBN: 9813146834
Category : Science
Languages : en
Pages : 844
Book Description
This book focuses on the unifying power of the geometrical language in bringing together concepts from many different areas of physics, ranging from classical physics to the theories describing the four fundamental interactions of Nature -- gravitational, electromagnetic, strong nuclear, and weak nuclear. The book provides in a single volume a thorough introduction to topology and differential geometry, as well as many applications to both mathematical and physical problems. It is aimed as an elementary text and is intended for first year graduate students. In addition to the traditional contents of books on special and general relativities, this book discusses also some recent advances such as de Sitter invariant special relativity, teleparallel gravity and their implications in cosmology for those wishing to reach a higher level of understanding.
Geometry: A Comprehensive Course
Author: Dan Pedoe
Publisher: Courier Corporation
ISBN: 0486131734
Category : Mathematics
Languages : en
Pages : 466
Book Description
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Publisher: Courier Corporation
ISBN: 0486131734
Category : Mathematics
Languages : en
Pages : 466
Book Description
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Geometrical Methods of Mathematical Physics
Author: Bernard F. Schutz
Publisher: Cambridge University Press
ISBN: 9780521298872
Category : Mathematics
Languages : en
Pages : 272
Book Description
For physicists and applied mathematicians working in the fields of relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This book provides an introduction to the concepts and techniques of modern differential theory, particularly Lie groups, Lie forms and differential forms.
Publisher: Cambridge University Press
ISBN: 9780521298872
Category : Mathematics
Languages : en
Pages : 272
Book Description
For physicists and applied mathematicians working in the fields of relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This book provides an introduction to the concepts and techniques of modern differential theory, particularly Lie groups, Lie forms and differential forms.
The Mathematics of Geometrical and Physical Optics
Author: Orestes N. Stavroudis
Publisher: John Wiley & Sons
ISBN: 352760829X
Category : Science
Languages : en
Pages : 240
Book Description
In this sequel to his book, "The Optics of Rays, Wavefronts, and Caustics," Stavroudis not only covers his own research results, but also includes more recent developments. The book is divided into three parts, starting with basic mathematical concepts that are further applied in the book. Surface geometry is treated with classical mathematics, while the second part covers the k-function, discussing and solving the eikonal equation as well as Maxwell equations in this context. A final part on applications consists of conclusions drawn or developed in the first two parts of the book, discussing such topics as the Cartesian oval, the modern Schiefspiegler, Huygen's principle, and Maxwell's model of Gauss' perfect lens.
Publisher: John Wiley & Sons
ISBN: 352760829X
Category : Science
Languages : en
Pages : 240
Book Description
In this sequel to his book, "The Optics of Rays, Wavefronts, and Caustics," Stavroudis not only covers his own research results, but also includes more recent developments. The book is divided into three parts, starting with basic mathematical concepts that are further applied in the book. Surface geometry is treated with classical mathematics, while the second part covers the k-function, discussing and solving the eikonal equation as well as Maxwell equations in this context. A final part on applications consists of conclusions drawn or developed in the first two parts of the book, discussing such topics as the Cartesian oval, the modern Schiefspiegler, Huygen's principle, and Maxwell's model of Gauss' perfect lens.
Advanced Euclidean Geometry
Author: Roger A. Johnson
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.