Author: Zongliang Zuo
Publisher: Frontiers Media SA
ISBN: 2832517714
Category : Technology & Engineering
Languages : en
Pages : 111
Book Description
Pollutant emission control in energy conversion process
Author: Zongliang Zuo
Publisher: Frontiers Media SA
ISBN: 2832517714
Category : Technology & Engineering
Languages : en
Pages : 111
Book Description
Publisher: Frontiers Media SA
ISBN: 2832517714
Category : Technology & Engineering
Languages : en
Pages : 111
Book Description
Nuclear Science Abstracts
Two-phase Flow Dynamics
Author: A. E. Bergles
Publisher: Hemisphere Pub
ISBN:
Category : Science
Languages : en
Pages : 570
Book Description
Publisher: Hemisphere Pub
ISBN:
Category : Science
Languages : en
Pages : 570
Book Description
Encyclopedia Of Two-phase Heat Transfer And Flow Iv: Modeling Methodologies, Boiling Of Co2, And Micro-two-phase Cooling (A 4-volume Set)
Author: John R Thome
Publisher: World Scientific Publishing
ISBN: 9813234385
Category : Technology & Engineering
Languages : en
Pages : 1353
Book Description
Set IV is a new addition to the previous Sets I, II and III. It contains 23 invited chapters from international specialists on the topics of numerical modeling of pulsating heat pipes and of slug flows with evaporation; lattice Boltzmann modeling of pool boiling; fundamentals of boiling in microchannels and microfin tubes, CO2 and nanofluids; testing and modeling of micro-two-phase cooling systems for electronics; and various special topics (flow separation in microfluidics, two-phase sensors, wetting of anisotropic surfaces, ultra-compact heat exchangers, etc.). The invited authors are leading university researchers and well-known engineers from leading corporate research laboratories (ABB, IBM, Nokia Bell Labs). Numerous 'must read' chapters are also included here for the two-phase community. Set IV constitutes a 'must have' engineering and research reference together with previous Sets I, II and III for thermal engineering researchers and practitioners.
Publisher: World Scientific Publishing
ISBN: 9813234385
Category : Technology & Engineering
Languages : en
Pages : 1353
Book Description
Set IV is a new addition to the previous Sets I, II and III. It contains 23 invited chapters from international specialists on the topics of numerical modeling of pulsating heat pipes and of slug flows with evaporation; lattice Boltzmann modeling of pool boiling; fundamentals of boiling in microchannels and microfin tubes, CO2 and nanofluids; testing and modeling of micro-two-phase cooling systems for electronics; and various special topics (flow separation in microfluidics, two-phase sensors, wetting of anisotropic surfaces, ultra-compact heat exchangers, etc.). The invited authors are leading university researchers and well-known engineers from leading corporate research laboratories (ABB, IBM, Nokia Bell Labs). Numerous 'must read' chapters are also included here for the two-phase community. Set IV constitutes a 'must have' engineering and research reference together with previous Sets I, II and III for thermal engineering researchers and practitioners.
Improved Two-Equation K-Omega Turbulence Models for Aerodynamic Flows
Author: National Aeronautics and Space Adm Nasa
Publisher:
ISBN: 9781728958446
Category :
Languages : en
Pages : 38
Book Description
Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows. Menter, Florian R. Ames Research Center RTOP 505-59-40...
Publisher:
ISBN: 9781728958446
Category :
Languages : en
Pages : 38
Book Description
Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows. Menter, Florian R. Ames Research Center RTOP 505-59-40...
Scientific and Technical Aerospace Reports
An Overview of Heat Transfer Phenomena
Author: Salim Newaz Kazi
Publisher: IntechOpen
ISBN: 9789535108276
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
In the wake of energy crisis due to rapid growth of industries, urbanization, transportation, and human habit, the efficient transfer of heat could play a vital role in energy saving. Industries, household requirements, offices, transportation are all dependent on heat exchanging equipment. Considering these, the present book has incorporated different sections related to general aspects of heat transfer phenomena, convective heat transfer mode, boiling and condensation, heat transfer to two phase flow and heat transfer augmentation by different means.
Publisher: IntechOpen
ISBN: 9789535108276
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
In the wake of energy crisis due to rapid growth of industries, urbanization, transportation, and human habit, the efficient transfer of heat could play a vital role in energy saving. Industries, household requirements, offices, transportation are all dependent on heat exchanging equipment. Considering these, the present book has incorporated different sections related to general aspects of heat transfer phenomena, convective heat transfer mode, boiling and condensation, heat transfer to two phase flow and heat transfer augmentation by different means.
Proceedings of the ASME Pressure Vessels and Piping Conference--2006: Fluid-structure interaction
Gas Cyclones and Swirl Tubes
Author: Alex C. Hoffmann
Publisher: Springer Science & Business Media
ISBN: 3662073773
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
This book has been conceived to provide guidance on the theory and design of cyclone systems. Forthose new to the topic, a cyclone is, in its most basic form, a stationary mechanical device that utilizes centrifugal force to separate solid or liquid particles from a carrier gas. Gas enters near the top via a tangential or vaned inlet, which gives rise to an axially descending spiral of gas and a centrifugal force field that causes the incoming particles to concentrate along, and spiral down, the inner walls of the separator. The thus-segregated particulate phase is allowed to exit out an underflow pipe while the gas phase constricts, and - in most separators - reverses its axial direction of flow and exits out a separate overflow pipe. Cyclones are applied in both heavy and light industrial applications and may be designed as either classifiers or separators. Their applications are as plentiful as they are varied. Examples include their use in the separation or classification of powder coatings, plastic fines, sawdust, wood chips, sand, sintered/powdered meta!, plastic and meta! pellets, rock and mineral cmshings, carbon fines, grain products, pulverized coal, chalk, coal and coal ash, catalyst and petroleum coke fines, mist entrained off of various processing units and liquid components from scmbbing and drilling operations. They have even been applied to separate foam into its component gas and liquid phases in recent years.
Publisher: Springer Science & Business Media
ISBN: 3662073773
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
This book has been conceived to provide guidance on the theory and design of cyclone systems. Forthose new to the topic, a cyclone is, in its most basic form, a stationary mechanical device that utilizes centrifugal force to separate solid or liquid particles from a carrier gas. Gas enters near the top via a tangential or vaned inlet, which gives rise to an axially descending spiral of gas and a centrifugal force field that causes the incoming particles to concentrate along, and spiral down, the inner walls of the separator. The thus-segregated particulate phase is allowed to exit out an underflow pipe while the gas phase constricts, and - in most separators - reverses its axial direction of flow and exits out a separate overflow pipe. Cyclones are applied in both heavy and light industrial applications and may be designed as either classifiers or separators. Their applications are as plentiful as they are varied. Examples include their use in the separation or classification of powder coatings, plastic fines, sawdust, wood chips, sand, sintered/powdered meta!, plastic and meta! pellets, rock and mineral cmshings, carbon fines, grain products, pulverized coal, chalk, coal and coal ash, catalyst and petroleum coke fines, mist entrained off of various processing units and liquid components from scmbbing and drilling operations. They have even been applied to separate foam into its component gas and liquid phases in recent years.