Author: M. M. Skriganov
Publisher: American Mathematical Soc.
ISBN: 9780821831045
Category : Mathematics
Languages : en
Pages : 132
Book Description
Geometric and Arithmetic Methods in the Spectral Theory of Multidimensional Periodic Operators
Author: M. M. Skriganov
Publisher: American Mathematical Soc.
ISBN: 9780821831045
Category : Mathematics
Languages : en
Pages : 132
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821831045
Category : Mathematics
Languages : en
Pages : 132
Book Description
Multidimensional Periodic Schrödinger Operator
Author: Oktay Veliev
Publisher: Springer Nature
ISBN: 3031490355
Category :
Languages : en
Pages : 420
Book Description
Publisher: Springer Nature
ISBN: 3031490355
Category :
Languages : en
Pages : 420
Book Description
Analysis and Geometry on Graphs and Manifolds
Author: Matthias Keller
Publisher: Cambridge University Press
ISBN: 1108587380
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book addresses the interplay between several rapidly expanding areas of mathematics. Suitable for graduate students as well as researchers, it provides surveys of topics linking geometry, spectral theory and stochastics.
Publisher: Cambridge University Press
ISBN: 1108587380
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book addresses the interplay between several rapidly expanding areas of mathematics. Suitable for graduate students as well as researchers, it provides surveys of topics linking geometry, spectral theory and stochastics.
Geometric and Arithmetic Methods in the Spectral Theory of Multidimensional Periodic Operators
Integral Methods in Science and Engineering
Author: Christian Constanda
Publisher: Springer Nature
ISBN: 3031071719
Category : Mathematics
Languages : en
Pages : 361
Book Description
This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. Chapters in this book are based on talks given at the Symposium on the Theory and Applications of Integral Methods in Science and Engineering, held virtually in July 2021, and are written by internationally recognized researchers. This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.
Publisher: Springer Nature
ISBN: 3031071719
Category : Mathematics
Languages : en
Pages : 361
Book Description
This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. Chapters in this book are based on talks given at the Symposium on the Theory and Applications of Integral Methods in Science and Engineering, held virtually in July 2021, and are written by internationally recognized researchers. This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.
Mathematical Modeling in Optical Science
Author: Gang Bao
Publisher: SIAM
ISBN: 9780898717594
Category : Science
Languages : en
Pages : 349
Book Description
This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers.
Publisher: SIAM
ISBN: 9780898717594
Category : Science
Languages : en
Pages : 349
Book Description
This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers.
Waves in Periodic and Random Media
Author: Peter Kuchment
Publisher: American Mathematical Soc.
ISBN: 0821832867
Category : Mathematics
Languages : en
Pages : 232
Book Description
Science and engineering have been great sources of problems and inspiration for generations of mathematicians. This is probably true now more than ever as numerous challenges in science and technology are met by mathematicians. One of these challenges is understanding propagation of waves of different nature in systems of complex structure. This book contains the proceedings of the research conference, ``Waves in Periodic and Random Media''. Papers are devoted to a number of related themes, including spectral theory of periodic differential operators, Anderson localization and spectral theory of random operators, photonic crystals, waveguide theory, mesoscopic systems, and designer random surfaces. Contributions are written by prominent experts and are of interest to researchers and graduate students in mathematical physics.
Publisher: American Mathematical Soc.
ISBN: 0821832867
Category : Mathematics
Languages : en
Pages : 232
Book Description
Science and engineering have been great sources of problems and inspiration for generations of mathematicians. This is probably true now more than ever as numerous challenges in science and technology are met by mathematicians. One of these challenges is understanding propagation of waves of different nature in systems of complex structure. This book contains the proceedings of the research conference, ``Waves in Periodic and Random Media''. Papers are devoted to a number of related themes, including spectral theory of periodic differential operators, Anderson localization and spectral theory of random operators, photonic crystals, waveguide theory, mesoscopic systems, and designer random surfaces. Contributions are written by prominent experts and are of interest to researchers and graduate students in mathematical physics.
Introduction to Quantum Graphs
Author: Gregory Berkolaiko
Publisher: American Mathematical Soc.
ISBN: 0821892118
Category : Mathematics
Languages : en
Pages : 291
Book Description
A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.
Publisher: American Mathematical Soc.
ISBN: 0821892118
Category : Mathematics
Languages : en
Pages : 291
Book Description
A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.
Solvable Models in Quantum Mechanics
Author: Sergio Albeverio
Publisher: American Mathematical Soc.
ISBN: 0821836242
Category : Science
Languages : en
Pages : 506
Book Description
"This monograph presents a detailed study of a class of solvable models in quantum mechanics that describe the motion of a particle in a potential having support at the positions of a discrete (finite or infinite) set of point sources. Both situations–where the strengths of the sources and their locations are precisely known and where these are only known with a given probability distribution–are covered. The authors present a systematic mathematical approach to these models and illustrate its connections with previous heuristic derivations and computations. Results obtained by different methods in disparate contexts are thus unified and a systematic control over approximations to the models, in which the point interactions are replaced by more regular ones, is provided. The first edition of this book generated considerable interest for those learning advanced mathematical topics in quantum mechanics, especially those connected to the Schrödinger equations. This second edition includes a new appendix by Pavel Exner, who has prepared a summary of the progress made in the field since 1988. His summary, centering around two-body point interaction problems, is followed by a bibliography focusing on essential developments made since 1988. appendix by Pavel Exner, who has prepared a summary of the progress made in the field since 1988. His summary, centering around two-body point interaction problems, is followed by a bibliography focusing on essential developments made since 1988."--Résumé de l'éditeur.
Publisher: American Mathematical Soc.
ISBN: 0821836242
Category : Science
Languages : en
Pages : 506
Book Description
"This monograph presents a detailed study of a class of solvable models in quantum mechanics that describe the motion of a particle in a potential having support at the positions of a discrete (finite or infinite) set of point sources. Both situations–where the strengths of the sources and their locations are precisely known and where these are only known with a given probability distribution–are covered. The authors present a systematic mathematical approach to these models and illustrate its connections with previous heuristic derivations and computations. Results obtained by different methods in disparate contexts are thus unified and a systematic control over approximations to the models, in which the point interactions are replaced by more regular ones, is provided. The first edition of this book generated considerable interest for those learning advanced mathematical topics in quantum mechanics, especially those connected to the Schrödinger equations. This second edition includes a new appendix by Pavel Exner, who has prepared a summary of the progress made in the field since 1988. His summary, centering around two-body point interaction problems, is followed by a bibliography focusing on essential developments made since 1988. appendix by Pavel Exner, who has prepared a summary of the progress made in the field since 1988. His summary, centering around two-body point interaction problems, is followed by a bibliography focusing on essential developments made since 1988."--Résumé de l'éditeur.
Floquet Theory for Partial Differential Equations
Author: P.A. Kuchment
Publisher: Birkhäuser
ISBN: 3034885733
Category : Science
Languages : en
Pages : 363
Book Description
Linear differential equations with periodic coefficients constitute a well developed part of the theory of ordinary differential equations [17, 94, 156, 177, 178, 272, 389]. They arise in many physical and technical applications [177, 178, 272]. A new wave of interest in this subject has been stimulated during the last two decades by the development of the inverse scattering method for integration of nonlinear differential equations. This has led to significant progress in this traditional area [27, 71, 72, 111 119, 250, 276, 277, 284, 286, 287, 312, 313, 337, 349, 354, 392, 393, 403, 404]. At the same time, many theoretical and applied problems lead to periodic partial differential equations. We can mention, for instance, quantum mechanics [14, 18, 40, 54, 60, 91, 92, 107, 123, 157-160, 192, 193, 204, 315, 367, 412, 414, 415, 417], hydrodynamics [179, 180], elasticity theory [395], the theory of guided waves [87-89, 208, 300], homogenization theory [29, 41, 348], direct and inverse scattering [175, 206, 216, 314, 388, 406-408], parametric resonance theory [122, 178], and spectral theory and spectral geometry [103 105, 381, 382, 389]. There is a sjgnificant distinction between the cases of ordinary and partial differential periodic equations. The main tool of the theory of periodic ordinary differential equations is the so-called Floquet theory [17, 94, 120, 156, 177, 267, 272, 389]. Its central result is the following theorem (sometimes called Floquet-Lyapunov theorem) [120, 267].
Publisher: Birkhäuser
ISBN: 3034885733
Category : Science
Languages : en
Pages : 363
Book Description
Linear differential equations with periodic coefficients constitute a well developed part of the theory of ordinary differential equations [17, 94, 156, 177, 178, 272, 389]. They arise in many physical and technical applications [177, 178, 272]. A new wave of interest in this subject has been stimulated during the last two decades by the development of the inverse scattering method for integration of nonlinear differential equations. This has led to significant progress in this traditional area [27, 71, 72, 111 119, 250, 276, 277, 284, 286, 287, 312, 313, 337, 349, 354, 392, 393, 403, 404]. At the same time, many theoretical and applied problems lead to periodic partial differential equations. We can mention, for instance, quantum mechanics [14, 18, 40, 54, 60, 91, 92, 107, 123, 157-160, 192, 193, 204, 315, 367, 412, 414, 415, 417], hydrodynamics [179, 180], elasticity theory [395], the theory of guided waves [87-89, 208, 300], homogenization theory [29, 41, 348], direct and inverse scattering [175, 206, 216, 314, 388, 406-408], parametric resonance theory [122, 178], and spectral theory and spectral geometry [103 105, 381, 382, 389]. There is a sjgnificant distinction between the cases of ordinary and partial differential periodic equations. The main tool of the theory of periodic ordinary differential equations is the so-called Floquet theory [17, 94, 120, 156, 177, 267, 272, 389]. Its central result is the following theorem (sometimes called Floquet-Lyapunov theorem) [120, 267].