Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms PDF full book. Access full book title Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms by Md. Zia Ur Rahman. Download full books in PDF and EPUB format.

Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms

Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms PDF Author: Md. Zia Ur Rahman
Publisher: CRC Press
ISBN: 1000375153
Category : Science
Languages : en
Pages : 202

Book Description
This book addresses the issue of improving the accuracy in exon prediction in DNA sequences using various adaptive techniques based on different performance measures that are crucial in disease diagnosis and therapy. First, the authors present an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods, followed by a review of literature starting with the biological background of genomic sequence analysis. Next, they cover various theoretical considerations of adaptive filtering techniques used for DNA analysis, with an introduction to adaptive filtering, properties of adaptive algorithms, and the need for development of adaptive exon predictors (AEPs) and structure of AEP used for DNA analysis. Then, they extend the approach of least mean squares (LMS) algorithm and its sign-based realizations with normalization factor for DNA analysis. They also present the normalized logarithmic-based realizations of least mean logarithmic squares (LMLS) and least logarithmic absolute difference (LLAD) adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants. This book ends with an overview of the goals achieved and highlights the primary achievements using all proposed techniques. This book is intended to provide rigorous use of adaptive signal processing algorithms for genetic engineering, biomedical engineering, and bioinformatics and is useful for undergraduate and postgraduate students. This will also serve as a practical guide for Ph.D. students and researchers and will provide a number of research directions for further work. Features Presents an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods Covers various theoretical considerations of adaptive filtering techniques used for DNA analysis, introduction to adaptive filtering, properties of adaptive algorithms, need for development of adaptive exon predictors (AEPs), and structure of AEP used for DNA analysis Extends the approach of LMS algorithm and its sign-based realizations with normalization factor for DNA analysis Presents the normalized logarithmic-based realizations of LMLS and LLAD adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants Provides an overview of the goals achieved and highlights the primary achievements using all proposed techniques Dr. Md. Zia Ur Rahman is a professor in the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His current research interests include adaptive signal processing, biomedical signal processing, genetic engineering, medical imaging, array signal processing, medical telemetry, and nanophotonics. Dr. Srinivasareddy Putluri is currently a Software Engineer at Tata Consultancy Services Ltd., Hyderabad. He received his Ph.D. degree (Genomic Signal Processing using Adaptive Signal Processing algorithms) from the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His research interests include genomic signal processing and adaptive signal processing. He has published 15 research papers in various journals and proceedings. He is currently a reviewer of publishers like the IEEE Access and IGI.

Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms

Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms PDF Author: Md. Zia Ur Rahman
Publisher: CRC Press
ISBN: 1000375153
Category : Science
Languages : en
Pages : 202

Book Description
This book addresses the issue of improving the accuracy in exon prediction in DNA sequences using various adaptive techniques based on different performance measures that are crucial in disease diagnosis and therapy. First, the authors present an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods, followed by a review of literature starting with the biological background of genomic sequence analysis. Next, they cover various theoretical considerations of adaptive filtering techniques used for DNA analysis, with an introduction to adaptive filtering, properties of adaptive algorithms, and the need for development of adaptive exon predictors (AEPs) and structure of AEP used for DNA analysis. Then, they extend the approach of least mean squares (LMS) algorithm and its sign-based realizations with normalization factor for DNA analysis. They also present the normalized logarithmic-based realizations of least mean logarithmic squares (LMLS) and least logarithmic absolute difference (LLAD) adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants. This book ends with an overview of the goals achieved and highlights the primary achievements using all proposed techniques. This book is intended to provide rigorous use of adaptive signal processing algorithms for genetic engineering, biomedical engineering, and bioinformatics and is useful for undergraduate and postgraduate students. This will also serve as a practical guide for Ph.D. students and researchers and will provide a number of research directions for further work. Features Presents an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods Covers various theoretical considerations of adaptive filtering techniques used for DNA analysis, introduction to adaptive filtering, properties of adaptive algorithms, need for development of adaptive exon predictors (AEPs), and structure of AEP used for DNA analysis Extends the approach of LMS algorithm and its sign-based realizations with normalization factor for DNA analysis Presents the normalized logarithmic-based realizations of LMLS and LLAD adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants Provides an overview of the goals achieved and highlights the primary achievements using all proposed techniques Dr. Md. Zia Ur Rahman is a professor in the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His current research interests include adaptive signal processing, biomedical signal processing, genetic engineering, medical imaging, array signal processing, medical telemetry, and nanophotonics. Dr. Srinivasareddy Putluri is currently a Software Engineer at Tata Consultancy Services Ltd., Hyderabad. He received his Ph.D. degree (Genomic Signal Processing using Adaptive Signal Processing algorithms) from the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His research interests include genomic signal processing and adaptive signal processing. He has published 15 research papers in various journals and proceedings. He is currently a reviewer of publishers like the IEEE Access and IGI.

Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms

Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms PDF Author: Md. Zia Ur Rahman
Publisher: CRC Press
ISBN: 1000375226
Category : Science
Languages : en
Pages : 227

Book Description
This book addresses the issue of improving the accuracy in exon prediction in DNA sequences using various adaptive techniques based on different performance measures that are crucial in disease diagnosis and therapy. First, the authors present an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods, followed by a review of literature starting with the biological background of genomic sequence analysis. Next, they cover various theoretical considerations of adaptive filtering techniques used for DNA analysis, with an introduction to adaptive filtering, properties of adaptive algorithms, and the need for development of adaptive exon predictors (AEPs) and structure of AEP used for DNA analysis. Then, they extend the approach of least mean squares (LMS) algorithm and its sign-based realizations with normalization factor for DNA analysis. They also present the normalized logarithmic-based realizations of least mean logarithmic squares (LMLS) and least logarithmic absolute difference (LLAD) adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants. This book ends with an overview of the goals achieved and highlights the primary achievements using all proposed techniques. This book is intended to provide rigorous use of adaptive signal processing algorithms for genetic engineering, biomedical engineering, and bioinformatics and is useful for undergraduate and postgraduate students. This will also serve as a practical guide for Ph.D. students and researchers and will provide a number of research directions for further work. Features Presents an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods Covers various theoretical considerations of adaptive filtering techniques used for DNA analysis, introduction to adaptive filtering, properties of adaptive algorithms, need for development of adaptive exon predictors (AEPs), and structure of AEP used for DNA analysis Extends the approach of LMS algorithm and its sign-based realizations with normalization factor for DNA analysis Presents the normalized logarithmic-based realizations of LMLS and LLAD adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants Provides an overview of the goals achieved and highlights the primary achievements using all proposed techniques Dr. Md. Zia Ur Rahman is a professor in the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His current research interests include adaptive signal processing, biomedical signal processing, genetic engineering, medical imaging, array signal processing, medical telemetry, and nanophotonics. Dr. Srinivasareddy Putluri is currently a Software Engineer at Tata Consultancy Services Ltd., Hyderabad. He received his Ph.D. degree (Genomic Signal Processing using Adaptive Signal Processing algorithms) from the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His research interests include genomic signal processing and adaptive signal processing. He has published 15 research papers in various journals and proceedings. He is currently a reviewer of publishers like the IEEE Access and IGI.

Proceedings of International Conference on Communication and Computational Technologies

Proceedings of International Conference on Communication and Computational Technologies PDF Author: Sandeep Kumar
Publisher: Springer Nature
ISBN: 9811632464
Category : Technology & Engineering
Languages : en
Pages : 1012

Book Description
This book gathers selected papers presented at 3rd International Conference on Communication and Computational Technologies (ICCCT 2021), jointly organized in virtual format by Rajasthan Institute of Engineering and Technology, Jaipur and Rajasthan Technical University Kota in association with Soft Computing Research Society, during 27–28 February 2021. The volume is a collection of state-of-the-art research work in the cutting-edge technologies related to communication and intelligent systems. The topics covered are algorithms and applications of intelligent systems, informatics and applications, and communication and control systems.

Proceedings of 2nd International Conference on Artificial Intelligence: Advances and Applications

Proceedings of 2nd International Conference on Artificial Intelligence: Advances and Applications PDF Author: Garima Mathur
Publisher: Springer Nature
ISBN: 9811663327
Category : Technology & Engineering
Languages : en
Pages : 850

Book Description
This book gathers outstanding research papers presented in the 2nd International Conference on Artificial Intelligence: Advances and Application (ICAIAA 2021), held in Poornima College of Engineering, Jaipur, India during 27-28 March 2021. This book covers research works carried out by various students such as bachelor, master and doctoral scholars, faculty and industry persons in the area of artificial intelligence, machine learning, deep learning applications in healthcare, agriculture, business, security, etc. It will also cover research in core concepts of computer networks, intelligent system design and deployment, real time systems, WSN, sensors and sensor nodes, SDN, NFV, etc.

Innovative Data Communication Technologies and Application

Innovative Data Communication Technologies and Application PDF Author: Jennifer S. Raj
Publisher: Springer Nature
ISBN: 3030380408
Category : Computers
Languages : en
Pages : 852

Book Description
This book presents emerging concepts in data mining, big data analysis, communication, and networking technologies, and discusses the state-of-the-art in data engineering practices to tackle massive data distributions in smart networked environments. It also provides insights into potential data distribution challenges in ubiquitous data-driven networks, highlighting research on the theoretical and systematic framework for analyzing, testing and designing intelligent data analysis models for evolving communication frameworks. Further, the book showcases the latest developments in wireless sensor networks, cloud computing, mobile network, autonomous systems, cryptography, automation, and other communication and networking technologies. In addition, it addresses data security, privacy and trust, wireless networks, data classification, data prediction, performance analysis, data validation and verification models, machine learning, sentiment analysis, and various data analysis techniques.

Advances in Computing and Data Sciences

Advances in Computing and Data Sciences PDF Author: Mayank Singh
Publisher: Springer Nature
ISBN: 3030814629
Category : Computers
Languages : en
Pages : 771

Book Description
This two-volume book constitutes the post-conference proceedings of the 5th International Conference on Advances in Computing and Data Sciences, ICACDS 2021, held in Nashik, India, in April 2021.* The 103 full papers were carefully reviewed and selected from 781 submissions. The papers in Part I and II are centered around topics like distributed systems organizing principles, development frameworks and environments, software verification and validation, computational complexity and cryptography, machine learning theory, database theory, probabilistic representations database management system engines, data mining, information retrieval query processing, database and storage security, ubiquitous and mobile computing, parallel computing methodologies, and others. *The conference was held virtually due to the COVID-19 pandemic.

Recent Developments in Applied Microbiology and Biochemistry

Recent Developments in Applied Microbiology and Biochemistry PDF Author: Viswanath Buddolla
Publisher: Academic Press
ISBN: 0128214074
Category : Science
Languages : en
Pages : 382

Book Description
Recent Developments in Applied Microbiology and Biochemistry, Vol. 2, provides a comprehensive treatment and understanding on application oriented microbial concepts, giving readers insights into recent developments in microbial biotechnology and medical, agricultural and environmental microbiology. - Discusses microbial proteome analyses and their importance in medical microbiology - Explores emerging trends in the prevention of current global health problems, such as cancer, obesity and immunity - Shows recent approaches in the production of novel enzymes from environmental samples by enrichment culture and metagenomics approaches - Guides readers through the status and recent developments in analytical methods for the detection of foodborne microorganisms

Computer-Aided Developments: Electronics and Communication

Computer-Aided Developments: Electronics and Communication PDF Author: Arun Kumar Sinha
Publisher: CRC Press
ISBN: 1000751759
Category : Technology & Engineering
Languages : en
Pages : 268

Book Description
The volume comprises of papers presented at the first CADEC-2019 conference held at Vellore Institute of Technology-Andhra Pradesh, Amaravati, India. The book contains computer simulated results in various areas of electronics and communication engineering such as, VLSI and embedded systems, wireless communication, signal processing, power electronics and control theory applications. This volume will help researchers and engineers to develop and extend their ideas in upcoming research in electronics and communication.

Computational Intelligence for Oncology and Neurological Disorders

Computational Intelligence for Oncology and Neurological Disorders PDF Author: Mrutyunjaya Panda
Publisher: CRC Press
ISBN: 1040085628
Category : Computers
Languages : en
Pages : 292

Book Description
With the advent of computational intelligence-based approaches, such as bio-inspired techniques, and the availability of clinical data from various complex experiments, medical consultants, researchers, neurologists, and oncologists, there is huge scope for CI-based applications in medical oncology and neurological disorders. This book focuses on interdisciplinary research in this field, bringing together medical practitioners dealing with neurological disorders and medical oncology along with CI investigators. The book collects high-quality original contributions, containing the latest developments or applications of practical use and value, presenting interdisciplinary research and review articles in the field of intelligent systems for computational oncology and neurological disorders. Drawing from work across computer science, physics, mathematics, medical science, psychology, cognitive science, oncology, and neurobiology among others, it combines theoretical, applied, computational, experimental, and clinical research. It will be of great interest to any neurology or oncology researchers focused on computational approaches.

Biologically-Inspired Energy Harvesting through Wireless Sensor Technologies

Biologically-Inspired Energy Harvesting through Wireless Sensor Technologies PDF Author: Ponnusamy, Vasaki
Publisher: IGI Global
ISBN: 1466697938
Category : Science
Languages : en
Pages : 343

Book Description
The need for sustainable sources of energy has become more prevalent in an effort to conserve natural resources, as well as optimize the performance of wireless networks in daily life. Renewable sources of energy also help to cut costs while still providing a reliable power sources. Biologically-Inspired Energy Harvesting through Wireless Sensor Technologies highlights emerging research in the areas of sustainable energy management and transmission technologies. Featuring technological advancements in green technology, energy harvesting, sustainability, networking, and autonomic computing, as well as bio-inspired algorithms and solutions utilized in energy management, this publication is an essential reference source for researchers, academicians, and students interested in renewable or sustained energy in wireless networks.