Author: Nusret Zencirci
Publisher: Springer Nature
ISBN: 3030773884
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Landraces possess a very large genetic base in population structure and are dynamic populations of cultivated plants with historical origin, distinct identity, and without any formal crop improvement. They are often genetically diverse, locally adapted, and associated with traditional farming systems. Resistance genes to biotic and abiotic stress factors, which are especially diversified in landraces, are of great interest to plant breeders, faced with global climate challenge. In addition, gene pools made of different landraces grown in different ecological conditions can be used for wheat breeding to enhance quality; yield and other desirable agricultural parameters. An estimated 75% of the genetic diversity of crop plants was lost in the last century due to the replacement of high yielding modern varieties. There is, thus, an urgent need to preserve existing species, not only for posterity but also as a means to secure food supply for a rising world population. In this book, we provide an overview of wheat landraces with special attention to genetic diversities, conservation, and utilization.
Wheat Landraces
Author: Nusret Zencirci
Publisher: Springer Nature
ISBN: 3030773884
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Landraces possess a very large genetic base in population structure and are dynamic populations of cultivated plants with historical origin, distinct identity, and without any formal crop improvement. They are often genetically diverse, locally adapted, and associated with traditional farming systems. Resistance genes to biotic and abiotic stress factors, which are especially diversified in landraces, are of great interest to plant breeders, faced with global climate challenge. In addition, gene pools made of different landraces grown in different ecological conditions can be used for wheat breeding to enhance quality; yield and other desirable agricultural parameters. An estimated 75% of the genetic diversity of crop plants was lost in the last century due to the replacement of high yielding modern varieties. There is, thus, an urgent need to preserve existing species, not only for posterity but also as a means to secure food supply for a rising world population. In this book, we provide an overview of wheat landraces with special attention to genetic diversities, conservation, and utilization.
Publisher: Springer Nature
ISBN: 3030773884
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Landraces possess a very large genetic base in population structure and are dynamic populations of cultivated plants with historical origin, distinct identity, and without any formal crop improvement. They are often genetically diverse, locally adapted, and associated with traditional farming systems. Resistance genes to biotic and abiotic stress factors, which are especially diversified in landraces, are of great interest to plant breeders, faced with global climate challenge. In addition, gene pools made of different landraces grown in different ecological conditions can be used for wheat breeding to enhance quality; yield and other desirable agricultural parameters. An estimated 75% of the genetic diversity of crop plants was lost in the last century due to the replacement of high yielding modern varieties. There is, thus, an urgent need to preserve existing species, not only for posterity but also as a means to secure food supply for a rising world population. In this book, we provide an overview of wheat landraces with special attention to genetic diversities, conservation, and utilization.
Ecological Genomics
Author: Christian R. Landry
Publisher: Springer Science & Business Media
ISBN: 9400773471
Category : Science
Languages : en
Pages : 358
Book Description
Researchers in the field of ecological genomics aim to determine how a genome or a population of genomes interacts with its environment across ecological and evolutionary timescales. Ecological genomics is trans-disciplinary by nature. Ecologists have turned to genomics to be able to elucidate the mechanistic bases of the biodiversity their research tries to understand. Genomicists have turned to ecology in order to better explain the functional cellular and molecular variation they observed in their model organisms. We provide an advanced-level book that covers this recent research and proposes future development for this field. A synthesis of the field of ecological genomics emerges from this volume. Ecological Genomics covers a wide array of organisms (microbes, plants and animals) in order to be able to identify central concepts that motivate and derive from recent investigations in different branches of the tree of life. Ecological Genomics covers 3 fields of research that have most benefited from the recent technological and conceptual developments in the field of ecological genomics: the study of life-history evolution and its impact of genome architectures; the study of the genomic bases of phenotypic plasticity and the study of the genomic bases of adaptation and speciation.
Publisher: Springer Science & Business Media
ISBN: 9400773471
Category : Science
Languages : en
Pages : 358
Book Description
Researchers in the field of ecological genomics aim to determine how a genome or a population of genomes interacts with its environment across ecological and evolutionary timescales. Ecological genomics is trans-disciplinary by nature. Ecologists have turned to genomics to be able to elucidate the mechanistic bases of the biodiversity their research tries to understand. Genomicists have turned to ecology in order to better explain the functional cellular and molecular variation they observed in their model organisms. We provide an advanced-level book that covers this recent research and proposes future development for this field. A synthesis of the field of ecological genomics emerges from this volume. Ecological Genomics covers a wide array of organisms (microbes, plants and animals) in order to be able to identify central concepts that motivate and derive from recent investigations in different branches of the tree of life. Ecological Genomics covers 3 fields of research that have most benefited from the recent technological and conceptual developments in the field of ecological genomics: the study of life-history evolution and its impact of genome architectures; the study of the genomic bases of phenotypic plasticity and the study of the genomic bases of adaptation and speciation.
Stripe Rust
Author: Xianming Chen
Publisher: Springer
ISBN: 9402411119
Category : Science
Languages : en
Pages : 723
Book Description
This book comprehensively introduces stripe rust disease, its development and its integral control. Covering the biology, genetics, genome, and functional genomics of the pathogen, it also discusses host and non-host resistance, their interactions and the epidemiology of the disease. It is intended for scientists, postgraduates and undergraduate studying stripe rust, plant pathology, crop breeding, crop protection and agricultural science, but is also a valuable reference book for consultants and administrators in agricultural businesses and education.
Publisher: Springer
ISBN: 9402411119
Category : Science
Languages : en
Pages : 723
Book Description
This book comprehensively introduces stripe rust disease, its development and its integral control. Covering the biology, genetics, genome, and functional genomics of the pathogen, it also discusses host and non-host resistance, their interactions and the epidemiology of the disease. It is intended for scientists, postgraduates and undergraduate studying stripe rust, plant pathology, crop breeding, crop protection and agricultural science, but is also a valuable reference book for consultants and administrators in agricultural businesses and education.
Wheat Blast
Author: Sudheer Kumar
Publisher: CRC Press
ISBN: 0429894074
Category : Science
Languages : en
Pages : 164
Book Description
Wheat Blast provides systematic and practical information on wheat blast pathology, summarises research progress and discusses future perspectives based on current understanding of the existing issues. The book explores advance technologies that may help in deciding the path for future research and development for better strategies and techniques to manage the wheat blast disease. It equips readers with basic and applied understanding on the identification of disease, its distribution and chances of further spread in new areas, its potential to cause yield losses to wheat, the conditions that favour disease development, disease prediction modelling, resistance breeding methods and management strategies against wheat blast. Features: Provides comprehensive information on wheat blast pathogen and its management under a single umbrella Covers disease identification and diagnostics which will be helpful to check introduction in new areas Discusses methods and protocol to study the different aspects of the disease such as diagnostics, variability, resistance screening, epiphytotic creation etc. Gives deep insight on the past, present and future outlook of wheat blast research progress This book’s chapters are contributed by experts and pioneers in their respective fields and it provides comprehensive insight with updated findings on wheat blast research. It serves as a valuable reference for researchers, policy makers, students, teachers, farmers, seed growers, traders, and other stakeholders dealing with wheat.
Publisher: CRC Press
ISBN: 0429894074
Category : Science
Languages : en
Pages : 164
Book Description
Wheat Blast provides systematic and practical information on wheat blast pathology, summarises research progress and discusses future perspectives based on current understanding of the existing issues. The book explores advance technologies that may help in deciding the path for future research and development for better strategies and techniques to manage the wheat blast disease. It equips readers with basic and applied understanding on the identification of disease, its distribution and chances of further spread in new areas, its potential to cause yield losses to wheat, the conditions that favour disease development, disease prediction modelling, resistance breeding methods and management strategies against wheat blast. Features: Provides comprehensive information on wheat blast pathogen and its management under a single umbrella Covers disease identification and diagnostics which will be helpful to check introduction in new areas Discusses methods and protocol to study the different aspects of the disease such as diagnostics, variability, resistance screening, epiphytotic creation etc. Gives deep insight on the past, present and future outlook of wheat blast research progress This book’s chapters are contributed by experts and pioneers in their respective fields and it provides comprehensive insight with updated findings on wheat blast research. It serves as a valuable reference for researchers, policy makers, students, teachers, farmers, seed growers, traders, and other stakeholders dealing with wheat.
Biotechnological and genomic approaches for enhancing agronomic performance of crops
Author: Sreepriya Pramod
Publisher: Frontiers Media SA
ISBN: 2832518400
Category : Science
Languages : en
Pages : 273
Book Description
Publisher: Frontiers Media SA
ISBN: 2832518400
Category : Science
Languages : en
Pages : 273
Book Description
Advances in Breeding for Wheat Disease Resistance
Author: Peter Bulli
Publisher: Frontiers Media SA
ISBN: 283250373X
Category : Science
Languages : en
Pages : 259
Book Description
Publisher: Frontiers Media SA
ISBN: 283250373X
Category : Science
Languages : en
Pages : 259
Book Description
Advances in breeding for quantitative disease resistance
Author: Valerio Hoyos-Villegas
Publisher: Frontiers Media SA
ISBN: 288976091X
Category : Science
Languages : en
Pages : 394
Book Description
Publisher: Frontiers Media SA
ISBN: 288976091X
Category : Science
Languages : en
Pages : 394
Book Description
Genome wide association studies and genomic selection for crop improvement in the era of big data
Author: Nunzio D’Agostino
Publisher: Frontiers Media SA
ISBN: 2889763382
Category : Science
Languages : en
Pages : 192
Book Description
Publisher: Frontiers Media SA
ISBN: 2889763382
Category : Science
Languages : en
Pages : 192
Book Description
Durability of Disease Resistance
Author: Th. Jacobs
Publisher: Springer
ISBN: 0792323149
Category : Science
Languages : en
Pages : 375
Book Description
From February 24 -28, 1992 an international symposium on Durability of Disease Resistance was held at the International Agricultural Centre in Wageningen, the Netherlands. The symposium, organized by the Department of Plant Breeding of Wageningen Agricultural University and the Centre for Plant Breeding and Repro duction Research, CPRO-DLO, was part of the DGIS funded programme Durable Resistance in Developing Countries. Without any form of prevention or protection nearly all crops will be seriously or even severely damaged by a range of pathogens. In modern agriculture man has been able to control many if not most pathogens using i) pesticides, ii) phyto sanitary methods such as control of seed and plant material in order to start a crop disease free, iii) agronomic measures such as crop rotation, iv) disease resis tance or combinations of these measures. Over the years the use of pesticides has increased enormously and so did the pro blems associated with pesticide use, such as environmental pollution and building of resistance and tolerance to these pesticides in the pathogens. The use of resis tance too increased strongly over the years and here too problems arose.
Publisher: Springer
ISBN: 0792323149
Category : Science
Languages : en
Pages : 375
Book Description
From February 24 -28, 1992 an international symposium on Durability of Disease Resistance was held at the International Agricultural Centre in Wageningen, the Netherlands. The symposium, organized by the Department of Plant Breeding of Wageningen Agricultural University and the Centre for Plant Breeding and Repro duction Research, CPRO-DLO, was part of the DGIS funded programme Durable Resistance in Developing Countries. Without any form of prevention or protection nearly all crops will be seriously or even severely damaged by a range of pathogens. In modern agriculture man has been able to control many if not most pathogens using i) pesticides, ii) phyto sanitary methods such as control of seed and plant material in order to start a crop disease free, iii) agronomic measures such as crop rotation, iv) disease resis tance or combinations of these measures. Over the years the use of pesticides has increased enormously and so did the pro blems associated with pesticide use, such as environmental pollution and building of resistance and tolerance to these pesticides in the pathogens. The use of resis tance too increased strongly over the years and here too problems arose.
Genetics and Genomics of the Triticeae
Author: Catherine Feuillet
Publisher: Springer Science & Business Media
ISBN: 0387774890
Category : Science
Languages : en
Pages : 774
Book Description
Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related to wheat and barley in Triticeae evolution, the latest developments in wheat and barley genomics will be of great use for developing rye genomics and for providing tools for rye improvement. Finally, a new model for temperate grasses has emerged in the past year with the development of the genetics and genomics (including a 8x whole genome shotgun sequencing project) of Brachypodium, a member of the Poeae family that is more closely related to the Triticeae than rice and can provide valuable information for supporting Triticeae genomics in the near future. These recent breakthroughs have yet to be reviewed in a single source of literature and current handbooks on wheat, barley, or rye are dedicated mainly to progress in genetics. In "Genetics and Genomics of the Triticeae", we will aim to comprehensively review the recent progress in the development of structural and functional genomics tools in the Triticeae species and review the understanding of wheat, barley, and rye biology that has resulted from these new resources as well as to illuminate how this new found knowledge can be applied for the improvement of these essential species. The book will be the seventh volume in the ambitious series of books, Plant Genetics and Genomics (Richard A. Jorgensen, series editor) that will attempt to bring the field up-to-date on the genetics and genomics of important crop plants and genetic models. It is our hope that the publication will be a useful and timely tool for researchers and students alike working with the Triticeae.
Publisher: Springer Science & Business Media
ISBN: 0387774890
Category : Science
Languages : en
Pages : 774
Book Description
Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related to wheat and barley in Triticeae evolution, the latest developments in wheat and barley genomics will be of great use for developing rye genomics and for providing tools for rye improvement. Finally, a new model for temperate grasses has emerged in the past year with the development of the genetics and genomics (including a 8x whole genome shotgun sequencing project) of Brachypodium, a member of the Poeae family that is more closely related to the Triticeae than rice and can provide valuable information for supporting Triticeae genomics in the near future. These recent breakthroughs have yet to be reviewed in a single source of literature and current handbooks on wheat, barley, or rye are dedicated mainly to progress in genetics. In "Genetics and Genomics of the Triticeae", we will aim to comprehensively review the recent progress in the development of structural and functional genomics tools in the Triticeae species and review the understanding of wheat, barley, and rye biology that has resulted from these new resources as well as to illuminate how this new found knowledge can be applied for the improvement of these essential species. The book will be the seventh volume in the ambitious series of books, Plant Genetics and Genomics (Richard A. Jorgensen, series editor) that will attempt to bring the field up-to-date on the genetics and genomics of important crop plants and genetic models. It is our hope that the publication will be a useful and timely tool for researchers and students alike working with the Triticeae.