Author:
Publisher: Elsevier
ISBN: 0081026919
Category : Science
Languages : en
Pages : 4266
Book Description
Comprehensive Natural Products III, Third Edition, Seven Volume Set updates and complements the previous two editions, including recent advances in cofactor chemistry, structural diversity of natural products and secondary metabolites, enzymes and enzyme mechanisms and new bioinformatics tools. Natural products research is a dynamic discipline at the intersection of chemistry and biology concerned with isolation, identification, structure elucidation, and chemical characteristics of naturally occurring compounds such as pheromones, carbohydrates, nucleic acids and enzymes. This book reviews the accumulated efforts of chemical and biological research to understand living organisms and their distinctive effects on health and medicine and to stimulate new ideas among the established natural products community. Provides readers with an in-depth review of current natural products research and a critical insight into the future direction of the field Bridges the gap in knowledge by covering developments in the field since the second edition published in 2010 Split into 7 sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Ensures that the knowledge within is easily understood by and applicable to a large audience
Comprehensive Natural Products III
Author:
Publisher: Elsevier
ISBN: 0081026919
Category : Science
Languages : en
Pages : 4266
Book Description
Comprehensive Natural Products III, Third Edition, Seven Volume Set updates and complements the previous two editions, including recent advances in cofactor chemistry, structural diversity of natural products and secondary metabolites, enzymes and enzyme mechanisms and new bioinformatics tools. Natural products research is a dynamic discipline at the intersection of chemistry and biology concerned with isolation, identification, structure elucidation, and chemical characteristics of naturally occurring compounds such as pheromones, carbohydrates, nucleic acids and enzymes. This book reviews the accumulated efforts of chemical and biological research to understand living organisms and their distinctive effects on health and medicine and to stimulate new ideas among the established natural products community. Provides readers with an in-depth review of current natural products research and a critical insight into the future direction of the field Bridges the gap in knowledge by covering developments in the field since the second edition published in 2010 Split into 7 sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Ensures that the knowledge within is easily understood by and applicable to a large audience
Publisher: Elsevier
ISBN: 0081026919
Category : Science
Languages : en
Pages : 4266
Book Description
Comprehensive Natural Products III, Third Edition, Seven Volume Set updates and complements the previous two editions, including recent advances in cofactor chemistry, structural diversity of natural products and secondary metabolites, enzymes and enzyme mechanisms and new bioinformatics tools. Natural products research is a dynamic discipline at the intersection of chemistry and biology concerned with isolation, identification, structure elucidation, and chemical characteristics of naturally occurring compounds such as pheromones, carbohydrates, nucleic acids and enzymes. This book reviews the accumulated efforts of chemical and biological research to understand living organisms and their distinctive effects on health and medicine and to stimulate new ideas among the established natural products community. Provides readers with an in-depth review of current natural products research and a critical insight into the future direction of the field Bridges the gap in knowledge by covering developments in the field since the second edition published in 2010 Split into 7 sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Ensures that the knowledge within is easily understood by and applicable to a large audience
Natural Compounds as Drugs, Volume II
Author: Frank Petersen
Publisher: Springer Science & Business Media
ISBN: 3764385952
Category : Medical
Languages : en
Pages : 425
Book Description
The use of substances derived from plants, fungi, bacteria and marine organisms has a long tradition in medicine. This book highlights the biodiversity-driven approaches which are now of eminent importance in natural products research. It addresses the question why natural products display such a complex chemical information, what makes them often unique and what their characteristics are. A compilation of current applicable technology makes this a brilliant reference work.
Publisher: Springer Science & Business Media
ISBN: 3764385952
Category : Medical
Languages : en
Pages : 425
Book Description
The use of substances derived from plants, fungi, bacteria and marine organisms has a long tradition in medicine. This book highlights the biodiversity-driven approaches which are now of eminent importance in natural products research. It addresses the question why natural products display such a complex chemical information, what makes them often unique and what their characteristics are. A compilation of current applicable technology makes this a brilliant reference work.
Lasso Peptides
Author: Yanyan Li
Publisher: Springer
ISBN: 1493910108
Category : Medical
Languages : en
Pages : 113
Book Description
Lasso peptides form a growing family of fascinating ribosomally-synthesized and post-translationally modified peptides produced by bacteria. They contain 15 to 24 residues and share a unique interlocked topology that involves an N-terminal 7 to 9-residue macrolactam ring where the C-terminal tail is threaded and irreversibly trapped. The ring results from the condensation of the N-terminal amino group with a side-chain carboxylate of a glutamate at position 8 or 9, or an aspartate at position 7, 8 or 9. The trapping of the tail involves bulky amino acids located in the tail below and above the ring and/or disulfide bridges connecting the ring and the tail. Lasso peptides are subdivided into three subtypes depending on the absence (class II) or presence of one (class III) or two (class I) disulfide bridges. The lasso topology results in highly compact structures that give to lasso peptides an extraordinary stability towards both protease degradation and denaturing conditions. Lasso peptides are generally receptor antagonists, enzyme inhibitors and/or antibacterial or antiviral (anti-HIV) agents. The lasso scaffold and the associated biological activities shown by lasso peptides on different key targets make them promising molecules with high therapeutic potential. Their application in drug design has been exemplified by the development of an integrin antagonist based on a lasso peptide scaffold. The biosynthesis machinery of lasso peptides is therefore of high biotechnological interest, especially since such highly compact and stable structures have to date revealed inaccessible by peptide synthesis. Lasso peptides are produced from a linear precursor LasA, which undergoes a maturation process involving several steps, in particular cleavage of the leader peptide and cyclization. The post-translational modifications are ensured by a dedicated enzymatic machinery, which is composed of an ATP-dependent cysteine protease (LasB) and a lactam synthetase (LasC) that form an enzymatic complex called lasso synthetase. Microcin J25, produced by Escherichia coli AY25, is the archetype of lasso peptides and the most extensively studied. To date only around forty lasso peptides have been isolated, but genome mining approaches have revealed that they are widely distributed among Proteobacteria and Actinobacteria, particularly in Streptomyces, making available a rich resource of novel lasso peptides and enzyme machineries towards lasso topologies.
Publisher: Springer
ISBN: 1493910108
Category : Medical
Languages : en
Pages : 113
Book Description
Lasso peptides form a growing family of fascinating ribosomally-synthesized and post-translationally modified peptides produced by bacteria. They contain 15 to 24 residues and share a unique interlocked topology that involves an N-terminal 7 to 9-residue macrolactam ring where the C-terminal tail is threaded and irreversibly trapped. The ring results from the condensation of the N-terminal amino group with a side-chain carboxylate of a glutamate at position 8 or 9, or an aspartate at position 7, 8 or 9. The trapping of the tail involves bulky amino acids located in the tail below and above the ring and/or disulfide bridges connecting the ring and the tail. Lasso peptides are subdivided into three subtypes depending on the absence (class II) or presence of one (class III) or two (class I) disulfide bridges. The lasso topology results in highly compact structures that give to lasso peptides an extraordinary stability towards both protease degradation and denaturing conditions. Lasso peptides are generally receptor antagonists, enzyme inhibitors and/or antibacterial or antiviral (anti-HIV) agents. The lasso scaffold and the associated biological activities shown by lasso peptides on different key targets make them promising molecules with high therapeutic potential. Their application in drug design has been exemplified by the development of an integrin antagonist based on a lasso peptide scaffold. The biosynthesis machinery of lasso peptides is therefore of high biotechnological interest, especially since such highly compact and stable structures have to date revealed inaccessible by peptide synthesis. Lasso peptides are produced from a linear precursor LasA, which undergoes a maturation process involving several steps, in particular cleavage of the leader peptide and cyclization. The post-translational modifications are ensured by a dedicated enzymatic machinery, which is composed of an ATP-dependent cysteine protease (LasB) and a lactam synthetase (LasC) that form an enzymatic complex called lasso synthetase. Microcin J25, produced by Escherichia coli AY25, is the archetype of lasso peptides and the most extensively studied. To date only around forty lasso peptides have been isolated, but genome mining approaches have revealed that they are widely distributed among Proteobacteria and Actinobacteria, particularly in Streptomyces, making available a rich resource of novel lasso peptides and enzyme machineries towards lasso topologies.
Genome Mining and Synthetic Biology in Marine Natural Products Discovery
Author: Maria Costantini
Publisher:
ISBN: 9783036502557
Category :
Languages : en
Pages : 92
Book Description
In recent years, marine genomics has become a growning rapidly field, helped by the large amount of information that is becoming available to the international scientific community. Taking into account the current excitement in the field of marine biotechnology, this Special Issue entitled “Genome Mining and Synthetic Biology in Marine Natural Product Discovery” aims to to assess the impact of these molecular approaches on the discovery of bioactive compounds from marine organisms. The term “genome mining” is used to identify all bioinformatic investigations aimed at detecting the biosynthetic pathways of bioactive natural products and their possible functional and chemical interactions. Several studies are now reporting on marine organisms. Oceans cover nearly 70% of the Earth's surface and host a huge ecological, chemical, and biological diversity. The natural conditions of the sea favor, in marine organisms, the production of a large variety of novel molecules with great pharmaceutical potential. Marine organisms are unique in their structural and functional features compared to terrestrial ones. Innovation in this field is very rapid, as revealed by the funding of several Seventh Framework Programme (FP7) and Horizon 2020 projects under the topic “Blue Growth”, with the urgent goal of discovering new drugs.
Publisher:
ISBN: 9783036502557
Category :
Languages : en
Pages : 92
Book Description
In recent years, marine genomics has become a growning rapidly field, helped by the large amount of information that is becoming available to the international scientific community. Taking into account the current excitement in the field of marine biotechnology, this Special Issue entitled “Genome Mining and Synthetic Biology in Marine Natural Product Discovery” aims to to assess the impact of these molecular approaches on the discovery of bioactive compounds from marine organisms. The term “genome mining” is used to identify all bioinformatic investigations aimed at detecting the biosynthetic pathways of bioactive natural products and their possible functional and chemical interactions. Several studies are now reporting on marine organisms. Oceans cover nearly 70% of the Earth's surface and host a huge ecological, chemical, and biological diversity. The natural conditions of the sea favor, in marine organisms, the production of a large variety of novel molecules with great pharmaceutical potential. Marine organisms are unique in their structural and functional features compared to terrestrial ones. Innovation in this field is very rapid, as revealed by the funding of several Seventh Framework Programme (FP7) and Horizon 2020 projects under the topic “Blue Growth”, with the urgent goal of discovering new drugs.
Uncultivated Microorganisms
Author: Slava S. Epstein
Publisher: Springer Science & Business Media
ISBN: 3540854657
Category : Medical
Languages : en
Pages : 215
Book Description
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).
Publisher: Springer Science & Business Media
ISBN: 3540854657
Category : Medical
Languages : en
Pages : 215
Book Description
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).
Natural Product Biosynthesis
Author: Christopher T. Walsh
Publisher: Royal Society of Chemistry
ISBN: 1788010760
Category : Science
Languages : en
Pages : 787
Book Description
This textbook describes the types of natural products, the biosynthetic pathways that enable the production of these molecules, and an update on the discovery of novel products in the post-genomic era.
Publisher: Royal Society of Chemistry
ISBN: 1788010760
Category : Science
Languages : en
Pages : 787
Book Description
This textbook describes the types of natural products, the biosynthetic pathways that enable the production of these molecules, and an update on the discovery of novel products in the post-genomic era.
The Role of Natural Products in Drug Discovery
Author: J. Mulzer
Publisher: Springer Science & Business Media
ISBN: 3662040425
Category : Medical
Languages : en
Pages : 363
Book Description
Natural Products have been important sources of useful drugs from prehistoric times to the present. This book gives an overview about this field and provides important recent contributions to the discovery of new drugs generated by research on natural products. Total synthesis of natural products with interesting biological activities is paving the way for the preparation of new and improved analogs. The methods of combinatorial chemistry permit the selection of the best drug from a large number of candidates. Beyond synthesis and evaluation of organic molecules a number of new bioorganic methods are coming to the fore and will be discucced in this isue of the ERnst schering Research Foundation workshop proceedings.
Publisher: Springer Science & Business Media
ISBN: 3662040425
Category : Medical
Languages : en
Pages : 363
Book Description
Natural Products have been important sources of useful drugs from prehistoric times to the present. This book gives an overview about this field and provides important recent contributions to the discovery of new drugs generated by research on natural products. Total synthesis of natural products with interesting biological activities is paving the way for the preparation of new and improved analogs. The methods of combinatorial chemistry permit the selection of the best drug from a large number of candidates. Beyond synthesis and evaluation of organic molecules a number of new bioorganic methods are coming to the fore and will be discucced in this isue of the ERnst schering Research Foundation workshop proceedings.
Chemical and Biological Synthesis
Author: Nick J Westwood
Publisher: Royal Society of Chemistry
ISBN: 178801507X
Category : Science
Languages : en
Pages : 317
Book Description
Synthetic chemistry plays a central role in many areas of chemical biology; utilising recent case studies, the goal of Chemical and Biological Synthesis is to highlight the full impact that the preparation of novel reagents can have in chemical biology. Covering the synthetic approaches that can be applied across the whole field of chemical biology, this book provides synthetic chemists with the broader context to which their work contributes and the biological questions that can be addressed through it. An ideal guide for postgraduate students and researchers in synthetic organic chemistry and chemical biology, Chemical and Biological Synthesis introduces synthetic techniques and methods to those who wish to incorporate synthesis for the first time in their biology-focused research programmes.
Publisher: Royal Society of Chemistry
ISBN: 178801507X
Category : Science
Languages : en
Pages : 317
Book Description
Synthetic chemistry plays a central role in many areas of chemical biology; utilising recent case studies, the goal of Chemical and Biological Synthesis is to highlight the full impact that the preparation of novel reagents can have in chemical biology. Covering the synthetic approaches that can be applied across the whole field of chemical biology, this book provides synthetic chemists with the broader context to which their work contributes and the biological questions that can be addressed through it. An ideal guide for postgraduate students and researchers in synthetic organic chemistry and chemical biology, Chemical and Biological Synthesis introduces synthetic techniques and methods to those who wish to incorporate synthesis for the first time in their biology-focused research programmes.
Natural Product Biosynthesis by Microorganisms and Plants
Author: D. A. Hopwood
Publisher: Academic Press
ISBN: 012394290X
Category : Alkaloids
Languages : en
Pages : 488
Book Description
Annotation This volume of 'Methods in Enzymology' continues the legacy of this premier serial by containing quality chapters authored by leaders in the field.
Publisher: Academic Press
ISBN: 012394290X
Category : Alkaloids
Languages : en
Pages : 488
Book Description
Annotation This volume of 'Methods in Enzymology' continues the legacy of this premier serial by containing quality chapters authored by leaders in the field.
Fungal Secondary Metabolism
Author: Nancy P. Keller
Publisher: Humana Press
ISBN: 9781627031219
Category : Science
Languages : en
Pages : 288
Book Description
Filamentous fungi have long been known for their ability to produce an enormous range of unusual chemical compounds known as secondary metabolites, many of which have potentially useful antibiotic or pharmacological properties. Recent focus on fungal genomics coupled with advances in detection and molecular manipulation techniques has galvanized a revitalization of this field. Fungal Secondary Metabolism: Methods and Protocols is aimed at providing the key methodologies currently in use and necessary for accessing and exploiting the natural product information provided by the genomes of this large and varied kingdom. Written by active researchers in the field, the chapters deal with all the steps necessary, from optimization of fungal culture conditions for metabolite production, through rapid genome sequencing and bioinformatics, and genetic manipulations for functional analysis, to detection and testing of metabolites. In addition, chapters on basic science address approaches to the genetic regulation, protein biochemistry, and cellular localization of the biosynthetic pathways. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and hands-on, Fungal Secondary Metabolism: Methods and Protocols encourages new investigators to enter the field and expands upon the expertise and range of skills of those already researching fungal natural products.
Publisher: Humana Press
ISBN: 9781627031219
Category : Science
Languages : en
Pages : 288
Book Description
Filamentous fungi have long been known for their ability to produce an enormous range of unusual chemical compounds known as secondary metabolites, many of which have potentially useful antibiotic or pharmacological properties. Recent focus on fungal genomics coupled with advances in detection and molecular manipulation techniques has galvanized a revitalization of this field. Fungal Secondary Metabolism: Methods and Protocols is aimed at providing the key methodologies currently in use and necessary for accessing and exploiting the natural product information provided by the genomes of this large and varied kingdom. Written by active researchers in the field, the chapters deal with all the steps necessary, from optimization of fungal culture conditions for metabolite production, through rapid genome sequencing and bioinformatics, and genetic manipulations for functional analysis, to detection and testing of metabolites. In addition, chapters on basic science address approaches to the genetic regulation, protein biochemistry, and cellular localization of the biosynthetic pathways. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and hands-on, Fungal Secondary Metabolism: Methods and Protocols encourages new investigators to enter the field and expands upon the expertise and range of skills of those already researching fungal natural products.