Author: Rudi Appels
Publisher: Sydney University Press
ISBN: 1920899103
Category : Science
Languages : en
Pages : 317
Book Description
The papers herein are volume 3 of the proceedings of the 11th International Wheat Genetics Symposium, held in Brisbane, Australia, in 2008. The series presents the science of the genetic sciences applied to bread and durum wheats and other species.
Proceedings of the 11th International Wheat Genetics Symposium, 24-29 August 2008, Brisbane, Qld., Australia
Author: Rudi Appels
Publisher: Sydney University Press
ISBN: 1920899103
Category : Science
Languages : en
Pages : 317
Book Description
The papers herein are volume 3 of the proceedings of the 11th International Wheat Genetics Symposium, held in Brisbane, Australia, in 2008. The series presents the science of the genetic sciences applied to bread and durum wheats and other species.
Publisher: Sydney University Press
ISBN: 1920899103
Category : Science
Languages : en
Pages : 317
Book Description
The papers herein are volume 3 of the proceedings of the 11th International Wheat Genetics Symposium, held in Brisbane, Australia, in 2008. The series presents the science of the genetic sciences applied to bread and durum wheats and other species.
Quantitative Genetics in Maize Breeding
Author: Arnel R. Hallauer
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669
Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669
Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm
Advances in Wheat Genetics: From Genome to Field
Author: Yasunari Ogihara
Publisher: Springer
ISBN: 4431556753
Category : Science
Languages : en
Pages : 421
Book Description
This proceedings is a collection of 46 selected papers that were presented at the 12th International Wheat Genetics Symposium (IWGS). Since the launch of the wheat genome sequencing project in 2005, the arrival of draft genome sequences has marked a new era in wheat genetics and genomics, catalyzing rapid advancement in the field. This book provides a comprehensive review of the forefront of wheat research, across various important topics such as germplasm and genetic diversity, cytogenetics and allopolyploid evolution, genome sequencing, structural and functional genomics, gene function and molecular biology, biotic stress, abiotic stress, grain quality, and classical and molecular breeding. Following an introduction, 9 parts of the book are dedicated to each of these topics. A final, 11th part entitled “Toward Sustainable Wheat Production” contains 7 excellent papers that were presented in the 12th IWGS Special Session supported by the OECD. With rapid population growth and radical climate changes, the world faces a global food crisis and is in need of another Green Revolution to boost yields of wheat and other widely grown staple crops. Although this book focuses on wheat, many of the newly developed techniques and results presented here can be applied to other plant species with large and complex genomes. As such, this volume is highly recommended for all students and researchers in wheat sciences and related plant sciences and for those who are interested in stable food production and food security.
Publisher: Springer
ISBN: 4431556753
Category : Science
Languages : en
Pages : 421
Book Description
This proceedings is a collection of 46 selected papers that were presented at the 12th International Wheat Genetics Symposium (IWGS). Since the launch of the wheat genome sequencing project in 2005, the arrival of draft genome sequences has marked a new era in wheat genetics and genomics, catalyzing rapid advancement in the field. This book provides a comprehensive review of the forefront of wheat research, across various important topics such as germplasm and genetic diversity, cytogenetics and allopolyploid evolution, genome sequencing, structural and functional genomics, gene function and molecular biology, biotic stress, abiotic stress, grain quality, and classical and molecular breeding. Following an introduction, 9 parts of the book are dedicated to each of these topics. A final, 11th part entitled “Toward Sustainable Wheat Production” contains 7 excellent papers that were presented in the 12th IWGS Special Session supported by the OECD. With rapid population growth and radical climate changes, the world faces a global food crisis and is in need of another Green Revolution to boost yields of wheat and other widely grown staple crops. Although this book focuses on wheat, many of the newly developed techniques and results presented here can be applied to other plant species with large and complex genomes. As such, this volume is highly recommended for all students and researchers in wheat sciences and related plant sciences and for those who are interested in stable food production and food security.
The Global Fusarium Initiative for International Collaboration
Author: Tomohiro Ban
Publisher: CIMMYT
ISBN: 970648146X
Category : Wheat fusarium culmorum head blight
Languages : en
Pages : 147
Book Description
Publisher: CIMMYT
ISBN: 970648146X
Category : Wheat fusarium culmorum head blight
Languages : en
Pages : 147
Book Description
Fungal Wheat Diseases: Etiology, Breeding, and Integrated Management
Author: Maria Rosa Simon
Publisher: Frontiers Media SA
ISBN: 2889668223
Category : Science
Languages : en
Pages : 400
Book Description
Publisher: Frontiers Media SA
ISBN: 2889668223
Category : Science
Languages : en
Pages : 400
Book Description
Fusarium Head Blight of Wheat and Barley
Author: Kurt J. Leonard
Publisher: American Phytopathological Society
ISBN:
Category : Barley
Languages : en
Pages : 544
Book Description
The book provides a comprehensive record of current knowledge on the nature of Fusarium head blight, the damage it causes, and current research on how to control it. The book begins with a historical account of Fusarium head blight epidemics that gives context to recent attempts to control epidemics in wheat and barley. A review of pathogen taxonomy and population biology helps scientists to see relationships among head blight pathogens and other Fusarium species. The information on epidemiology included in this review also provides an understanding of the weather conditions and cultural practices that promote explosive epidemics. New information on infection processes will lead the reader to a better understanding of how to breed for resistance in wheat and barley.
Publisher: American Phytopathological Society
ISBN:
Category : Barley
Languages : en
Pages : 544
Book Description
The book provides a comprehensive record of current knowledge on the nature of Fusarium head blight, the damage it causes, and current research on how to control it. The book begins with a historical account of Fusarium head blight epidemics that gives context to recent attempts to control epidemics in wheat and barley. A review of pathogen taxonomy and population biology helps scientists to see relationships among head blight pathogens and other Fusarium species. The information on epidemiology included in this review also provides an understanding of the weather conditions and cultural practices that promote explosive epidemics. New information on infection processes will lead the reader to a better understanding of how to breed for resistance in wheat and barley.
Fusarium-blight (scab) of Wheat and Other Cereals
Author: Dimitŭr Atanasov
Publisher:
ISBN:
Category : Fusarium
Languages : en
Pages : 58
Book Description
Publisher:
ISBN:
Category : Fusarium
Languages : en
Pages : 58
Book Description
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 994
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 994
Book Description
Management of Fusarium Species and Their Mycotoxins in Cereal Food and Feed
Author: Thomas Miedaner
Publisher: Frontiers Media SA
ISBN: 2889452948
Category :
Languages : en
Pages : 261
Book Description
Health and safety of food and feed are the most important criteria for their quality. The quality of feed is in turn important for animal health, the environment and for the safety of food from animal origin. Fungi belonging to the Fusarium genus are widespread in crops causing plant diseases and producing toxic metabolites. Fusarium species can colonize plants during their growth on the field and cause serious damage in terms of yield and quality of harvested grains. One of the most important fungal diseases of wheat and other cereals in the world is Fusariumhead blight caused by the fungal pathogens Fusarium graminearum and Fusarium culmorumand others. In addition, these fungi produce mycotoxins, contaminating food and feed. The most important Fusarium mycotoxins include trichothecenes, zearalenone and fumonisins, primarily because of their prevalence, but also because of the toxic effect to humans and animals. However, these fungi produce also other mycotoxins such as moniliformin, beauvericin, enniantin or fusarins. Food and feed can be contaminated with mycotoxins at various stages in the production chain resulting in serious problems with health, safety and economic losses. It is estimated that 25% of the crop in the world each year are contaminated with these metabolites, the problem affects both industrialized countries and developing countries. The aim of this Research Topic of Frontiers in Microbiology is to publish state of the art research about occurrence and genomics of Fusarium species and their mycotoxins in the whole food and feed chain starting from the crops as well as implications for health and economic aspects. This research topic highlights the current knowledge on the plant diseases caused by Fusarium fungi as well as all aspects of Fusarium mycotoxin contamination of crops, food and feed, taking into account decontamination methods.
Publisher: Frontiers Media SA
ISBN: 2889452948
Category :
Languages : en
Pages : 261
Book Description
Health and safety of food and feed are the most important criteria for their quality. The quality of feed is in turn important for animal health, the environment and for the safety of food from animal origin. Fungi belonging to the Fusarium genus are widespread in crops causing plant diseases and producing toxic metabolites. Fusarium species can colonize plants during their growth on the field and cause serious damage in terms of yield and quality of harvested grains. One of the most important fungal diseases of wheat and other cereals in the world is Fusariumhead blight caused by the fungal pathogens Fusarium graminearum and Fusarium culmorumand others. In addition, these fungi produce mycotoxins, contaminating food and feed. The most important Fusarium mycotoxins include trichothecenes, zearalenone and fumonisins, primarily because of their prevalence, but also because of the toxic effect to humans and animals. However, these fungi produce also other mycotoxins such as moniliformin, beauvericin, enniantin or fusarins. Food and feed can be contaminated with mycotoxins at various stages in the production chain resulting in serious problems with health, safety and economic losses. It is estimated that 25% of the crop in the world each year are contaminated with these metabolites, the problem affects both industrialized countries and developing countries. The aim of this Research Topic of Frontiers in Microbiology is to publish state of the art research about occurrence and genomics of Fusarium species and their mycotoxins in the whole food and feed chain starting from the crops as well as implications for health and economic aspects. This research topic highlights the current knowledge on the plant diseases caused by Fusarium fungi as well as all aspects of Fusarium mycotoxin contamination of crops, food and feed, taking into account decontamination methods.